Existence of Nash, Approximate and Sharing Rule Equilibria in Discontinuous Games

Rida Laraki
CNRS
LAMSADE (Dauphine University)
& Economics Department (Ecole Polytechnique)

School Equilibria in Games, Santiago-Chile, January 5, 2017

Contents

- Introduction
- 2 Nash existence results in pure strategies
- Approximate and sharing rule solutions in pure strategies
- Existence of equilibria in mixed strategies
- 6 Applications

 Many classical problems in economics are formulated as discontinuous games.

- Many classical problems in economics are formulated as discontinuous games.
- Discontinuities may arise when firms choose the same price, location, bid or stopping time.

- Many classical problems in economics are formulated as discontinuous games.
- Discontinuities may arise when firms choose the same price, location, bid or stopping time.
- Standard existence results, such as Nash-Glicksberg cannot be used directly to prove existence of an "equilibrium".

- Many classical problems in economics are formulated as discontinuous games.
- Discontinuities may arise when firms choose the same price, location, bid or stopping time.
- Standard existence results, such as Nash-Glicksberg cannot be used directly to prove existence of an "equilibrium".
- Two natural questions arise:
 - Q1:) Under which conditions does a Nash equilibrium exist?
 - Q2:) When a Nash Eq does not exist, which solution to use?

Q1:) Under which conditions does a Nash equilibrium exist?

- Q1:) Under which conditions does a Nash equilibrium exist?
 - Reny (Econ 1999) proved that any BRS game (in pure or mixed strategies) admits a Nash equilibrium.

- Q1:) Under which conditions does a Nash equilibrium exist?
 - Reny (Econ 1999) proved that any BRS game (in pure or mixed strategies) admits a Nash equilibrium.
 - Reny's paper generates a very active literature:
 Bagh and Jofre (2006), Carmona (2005-2009), Barelli-Soza (2009), McLennan-Monteiro-Tourky (2011), Barelli-Menghel (2013), Reny (2010, 2015), Bich-Laraki (2016).

- Q1:) Under which conditions does a Nash equilibrium exist?
 - Reny (Econ 1999) proved that any BRS game (in pure or mixed strategies) admits a Nash equilibrium.
 - Reny's paper generates a very active literature:
 Bagh and Jofre (2006), Carmona (2005-2009), Barelli-Soza (2009), McLennan-Monteiro-Tourky (2011), Barelli-Menghel (2013), Reny (2010, 2015), Bich-Laraki (2016).
 - Baye, Tian and Zhou (1993) presented (an apparently) quite different approach. We will see (in the conference), that their approach is also linked to Reny.

In answer to the second question

Q2:) When a Nash Eq does not exist, which solution to use?

In answer to the second question

Q2:) When a Nash Eq does not exist, which solution to use?

• We will study the Simon and Zame (1990) sharing rule solution concept where it is proved that any compact game G has a close game \tilde{G} that admits a Nash mixed equilibrium (only the tie-breaking rule is modified).

In answer to the second question

Q2:) When a Nash Eq does not exist, which solution to use?

- We will study the Simon and Zame (1990) sharing rule solution concept where it is proved that any compact game G has a close game \tilde{G} that admits a Nash mixed equilibrium (only the tie-breaking rule is modified).
- We will also study approximate equilibrium (limit of ϵ -Nash equilibria as $\epsilon \to 0$).

• [0,4] represents an interstate highway.

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x, y) = 4 u_1(x, y)$ (constant-sum game).

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x, y) = 4 u_1(x, y)$ (constant-sum game).
- The game is quasi-concave with no Nash equilibrium.

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x,y) = 4 u_1(x,y)$ (constant-sum game).
- The game is quasi-concave with no Nash equilibrium.
- Define a new constant-sum game with $q_1(3,3) = 3$ and $q_1 = u_1$ otherwise.

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x,y) = 4 u_1(x,y)$ (constant-sum game).
- The game is quasi-concave with no Nash equilibrium.
- Define a new constant-sum game with $q_1(3,3) = 3$ and $q_1 = u_1$ otherwise.
- (x, y) = (3, 3) is a Nash equilibrium of the new game.

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x,y) = 4 u_1(x,y)$ (constant-sum game).
- The game is quasi-concave with no Nash equilibrium.
- Define a new constant-sum game with $q_1(3,3) = 3$ and $q_1 = u_1$ otherwise.
- (x, y) = (3, 3) is a Nash equilibrium of the new game.
- The new sharing rule gives each player its market share (3,1).

- [0,4] represents an interstate highway.
- Strategy space of player 1 is X = [0,3] (Californian part).
- Strategy space of player 2 is Y = [3, 4] (Oregon part).
- $u_1(x,y) = \frac{x+y}{2}$ if x < y and $u_1(3,3) = 2$.
- $u_2(x,y) = 4 u_1(x,y)$ (constant-sum game).
- The game is quasi-concave with no Nash equilibrium.
- Define a new constant-sum game with $q_1(3,3) = 3$ and $q_1 = u_1$ otherwise.
- (x, y) = (3, 3) is a Nash equilibrium of the new game.
- The new sharing rule gives each player its market share (3,1).
- Remark: $(3 \epsilon, 3)$ is an ϵ -equilibrium with payoff $\approx (3, 1)$.

• Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).

- Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).
- Assume a linear demand $Q = a min(p_1, p_2)$ and constant marginal costs $c_1 < c_2 < \frac{a+c_1}{2}$.

- Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).
- Assume a linear demand $Q = a min(p_1, p_2)$ and constant marginal costs $c_1 < c_2 < \frac{a+c_1}{2}$.
- The game has no Nash equilibrium if the firms share the market equally in case of a tie in prices.

- Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).
- Assume a linear demand $Q = a min(p_1, p_2)$ and constant marginal costs $c_1 < c_2 < \frac{a+c_1}{2}$.
- The game has no Nash equilibrium if the firms share the market equally in case of a tie in prices.
- Nevertheless, it is quasiconcave and compact.

- Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).
- Assume a linear demand $Q = a min(p_1, p_2)$ and constant marginal costs $c_1 < c_2 < \frac{a+c_1}{2}$.
- The game has no Nash equilibrium if the firms share the market equally in case of a tie in prices.
- Nevertheless, it is quasiconcave and compact.
- If the sharing rule gives the entire market to the firm with low cost, then $(p_1, p_2) = (c_2, c_2)$ is a pure Nash equilibrium.

- Two firms i = 1, 2 choose prices $p_i \in [0, a]$ (a > 0).
- Assume a linear demand $Q = a min(p_1, p_2)$ and constant marginal costs $c_1 < c_2 < \frac{a+c_1}{2}$.
- The game has no Nash equilibrium if the firms share the market equally in case of a tie in prices.
- Nevertheless, it is quasiconcave and compact.
- If the sharing rule gives the entire market to the firm with low cost, then $(p_1, p_2) = (c_2, c_2)$ is a pure Nash equilibrium.
- Remark: $(c_2 \epsilon, c_2)$ is an ϵ -equilibrium...

• Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.

- Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.
- The winner is the player with the highest bid. He pays his bid.

- Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.
- The winner is the player with the highest bid. He pays his bid.
- Agent i utility is:

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_i & \text{if } b_i < b_j, \\ \frac{v_i - b_i}{2} & \text{if } b_j = b_j, \\ 0 & \text{if } b_i > b_j. \end{cases}$$

- Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.
- The winner is the player with the highest bid. He pays his bid.
- Agent i utility is:

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_i & \text{if } b_i < b_j, \\ \frac{v_i - b_i}{2} & \text{if } b_j = b_j, \\ 0 & \text{if } b_i > b_j. \end{cases}$$

• Suppose $v_1 > v_2$. The game has no pure Nash equilibrium.

- Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.
- The winner is the player with the highest bid. He pays his bid.
- Agent i utility is:

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_i & \text{if } b_i < b_j, \\ \frac{v_i - b_i}{2} & \text{if } b_j = b_j, \\ 0 & \text{if } b_i > b_j. \end{cases}$$

- Suppose $v_1 > v_2$. The game has no pure Nash equilibrium.
- If the sharing rule gives the good to the agent with the highest valuation, then $(b_1, b_2) = (v_2, v_2)$ is a Nash equilibrium.

- Two agents i = 1, 2 choose bids $b_i \in [0, 1]$ in an auction for an indivisible good.
- The winner is the player with the highest bid. He pays his bid.
- Agent i utility is:

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_i & \text{if } b_i < b_j, \\ \frac{v_i - b_i}{2} & \text{if } b_j = b_j, \\ 0 & \text{if } b_i > b_j. \end{cases}$$

- Suppose $v_1 > v_2$. The game has no pure Nash equilibrium.
- If the sharing rule gives the good to the agent with the highest valuation, then $(b_1, b_2) = (v_2, v_2)$ is a Nash equilibrium.
- Remark: $(v_2 + \epsilon, v_2)$ is an ϵ -equilibrium where the agent with the highest evaluation wins and pays $\approx v_2$.

Outline

Lecture 1: Discontinuous Games in Pure Strategies

 Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

Lecture 2: Discontinuous Games in Mixed Strategies

• Existence of sharing rule solutions (Simon and Zame).

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

- Existence of sharing rule solutions (Simon and Zame).
- Existence of Nash equilibrium in BRS games (a simpler proof).

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

- Existence of sharing rule solutions (Simon and Zame).
- Existence of Nash equilibrium in BRS games (a simpler proof).
- Linking Nash, Reny, approximate and sharing rule solutions.

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

- Existence of sharing rule solutions (Simon and Zame).
- Existence of Nash equilibrium in BRS games (a simpler proof).
- Linking Nash, Reny, approximate and sharing rule solutions.
- Strategic approximation.

Lecture 1: Discontinuous Games in Pure Strategies

- Nash existence results: Reny better-reply security, history of improvements (e.g. McLennan, Barelli Menghel), to correspondence security.
- Existence of approximate and sharing rule solutions.
- Linking Nash, Reny, approximate and sharing rule solutions.
- Applications (to diagonal games).

- Existence of sharing rule solutions (Simon and Zame).
- Existence of Nash equilibrium in BRS games (a simpler proof).
- Linking Nash, Reny, approximate and sharing rule solutions.
- Strategic approximation.
- Applications (to auctions).

Contents

- Introduction
- 2 Nash existence results in pure strategies
- 3 Approximate and sharing rule solutions in pure strategies
- 4 Existence of equilibria in mixed strategies
- 6 Applications

Notations

Let
$$G = ((X_i)_{i \in N}, (u_i)_{i \in N})$$
 be a compact game:

• X_i pure strategy set of player i a compact subset of a Hausdorff and locally convex topological vector space.

Let
$$G = ((X_i)_{i \in N}, (u_i)_{i \in N})$$
 be a compact game:

- X_i pure strategy set of player i
 a compact subset of a Hausdorff and locally convex topological
 vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i

Let
$$G = ((X_i)_{i \in N}, (u_i)_{i \in N})$$
 be a compact game:

- X_i pure strategy set of player i
 a compact subset of a Hausdorff and locally convex topological
 vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i
- $x_{-i} = (x_j)_{j \neq i}$ and $X_{-i} = \prod_{j \neq i} X_j$

Notations

Let $G = ((X_i)_{i \in N}, (u_i)_{i \in N})$ be a compact game:

- X_i pure strategy set of player i a compact subset of a Hausdorff and locally convex topological vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i
- $x_{-i} = (x_i)_{i \neq i}$ and $X_{-i} = \prod_{i \neq i} X_i$
- G is quasiconcave if for every player $i \in N$, X_i is convex and the mapping $u_i(\cdot, x_{-i})$ is quasiconcave.

Let
$$G = ((X_i)_{i \in N}, (u_i)_{i \in N})$$
 be a compact game:

- X_i pure strategy set of player i
 a compact subset of a Hausdorff and locally convex topological
 vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i
- $x_{-i} = (x_j)_{j \neq i}$ and $X_{-i} = \prod_{j \neq i} X_j$
- G is quasiconcave if for every player $i \in N$, X_i is convex and the mapping $u_i(\cdot, x_{-i})$ is quasiconcave.
- $\Gamma = \{(x, u(x)) : x \in X\}$ is the graph of G.

Let
$$G = ((X_i)_{i \in N}, (u_i)_{i \in N})$$
 be a compact game:

- X_i pure strategy set of player i a compact subset of a Hausdorff and locally convex topological vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i
- $x_{-i} = (x_i)_{i \neq i}$ and $X_{-i} = \prod_{i \neq i} X_i$
- G is quasiconcave if for every player $i \in N$, X_i is convex and the mapping $u_i(\cdot, x_{-i})$ is quasiconcave.
- $\Gamma = \{(x, u(x)) : x \in X\}$ is the graph of G.
- \bullet $\overline{\Gamma}$ is the closure of Γ .

Notations

Let $G = ((X_i)_{i \in N}, (u_i)_{i \in N})$ be a compact game:

- X_i pure strategy set of player i a compact subset of a Hausdorff and locally convex topological vector space.
- $u_i: X = \prod_{i \in N} X_i \to \mathbb{R}$ the bounded utility function of i
- $x_{-i} = (x_i)_{i \neq i}$ and $X_{-i} = \prod_{i \neq i} X_i$
- G is quasiconcave if for every player $i \in N$, X_i is convex and the mapping $u_i(\cdot, x_{-i})$ is quasiconcave.
- $\Gamma = \{(x, u(x)) : x \in X\}$ is the graph of G.
- \bullet $\overline{\Gamma}$ is the closure of Γ .
- $\overline{\Gamma}_x = \{ v \in \mathbb{R}^N : (x, v) \in \overline{\Gamma} \}$ is the x-section of $\overline{\Gamma}$.

Definition

A game is better-reply secure (BRS) if for every $(x, v) \in \overline{\Gamma}$ Whenever x is not a Nash equilibrium,

Definition

A game is better-reply secure (BRS) if for every $(x, v) \in \overline{\Gamma}$ Whenever x is not a Nash equilibrium, $\exists i \in N$ and $\exists d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Definition

A game is better-reply secure (BRS) if for every $(x, v) \in \overline{\Gamma}$ Whenever x is not a Nash equilibrium, $\exists i \in N$ and $\exists d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Where:

$$\underline{u_i(d_i,x_{-i})} := \sup_{V \in \mathcal{V}(x)} \inf_{x' \in V} u_i(d_i,x'_{-i}) = \liminf_{x'_{-i} \to x_{-i}} u_i(d_i,x'_{-i}),$$

where $\mathcal{V}(x)$ denotes the set of neighborhoods of x.

Definition

A game is better-reply secure (BRS) if for every $(x, v) \in \overline{\Gamma}$ Whenever x is not a Nash equilibrium, $\exists i \in N$ and $\exists d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Where:

$$\underline{u_i(d_i,x_{-i})} := \sup_{V \in \mathcal{V}(x)} \inf_{x' \in V} u_i(d_i,x'_{-i}) = \liminf_{x'_{-i} \to x_{-i}} u_i(d_i,x'_{-i}),$$

where $\mathcal{V}(x)$ denotes the set of neighborhoods of x.

Theorem (Reny 1999)

Any better-reply secure quasiconcave compact game G admits a pure Nash equilibrium.

Let us define the following relaxation of Nash equilibrium.

Definition

 $(x, v) \in \overline{\Gamma}$ is a Reny equilibrium if

$$\forall i \in N, \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i.$$

Let us define the following relaxation of Nash equilibrium.

Definition

$$(x, v) \in \overline{\Gamma}$$
 is a Reny equilibrium if

$$\forall i \in N, \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i.$$

Theorem (Bich-Laraki 2016)

Any quasiconcave compact game G admits a Reny equilibrium.

Let us define the following relaxation of Nash equilibrium.

Definition

$$(x, v) \in \overline{\Gamma}$$
 is a Reny equilibrium if

$$\forall i \in N, \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i.$$

Theorem (Bich-Laraki 2016)

Any quasiconcave compact game G admits a Reny equilibrium.

Proof: this result was implicitely proved in Reny 1999.

Let us define the following relaxation of Nash equilibrium.

Definition

 $(x, v) \in \overline{\Gamma}$ is a Reny equilibrium if

$$\forall i \in N, \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i.$$

Theorem (Bich-Laraki 2016)

Any quasiconcave compact game G admits a Reny equilibrium.

Proof: this result was implicitely proved in Reny 1999.

Corollary

If a quasi-concave and compact game G is better reply secure, it admits a Nash equilibrium.

Let us define the following relaxation of Nash equilibrium.

Definition

 $(x, v) \in \overline{\Gamma}$ is a Reny equilibrium if

$$\forall i \in N, \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i.$$

Theorem (Bich-Laraki 2016)

Any quasiconcave compact game G admits a Reny equilibrium.

Proof: this result was implicitely proved in Reny 1999.

Corollary

If a quasi-concave and compact game G is better reply secure, it admits a Nash equilibrium.

Proof: G is better-reply secure <=> Nash and Reny coincide.

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \leq v_i$ for every $i \in N$, then u(x) = v.

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \leq v_i$ for every $i \in N$, then u(x) = v.

Corollary (Reny 1999)

Every payoff secure and reciprocally upper semicontinuous game is better-reply secure.

Proof.

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \leq v_i$ for every $i \in N$, then u(x) = v.

Corollary (Reny 1999)

Every payoff secure and reciprocally upper semicontinuous game is better-reply secure.

Proof.

• Let (x, v) be a Reny equilibrium: for every $i \in N$, $\sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \le v_i$.

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \le v_i$ for every $i \in N$, then u(x) = v.

Corollary (Reny 1999)

Every payoff secure and reciprocally upper semicontinuous game is better-reply secure.

Proof.

- Let (x, v) be a Reny equilibrium: for every $i \in N$, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.
- Since the game is payoff secure, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.

200

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \le v_i$ for every $i \in N$, then u(x) = v.

Corollary (Reny 1999)

Every payoff secure and reciprocally upper semicontinuous game is better-reply secure.

Proof.

- Let (x, v) be a Reny equilibrium: for every $i \in N$, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.
- Since the game is payoff secure, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.
- Thus, $u_i(x) \le v_i$ for every $i \in N$.

200

Definition

- (i) G is payoff secure if $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$.
- (ii) G is reciprocally upper semicontinuous if, whenever $(x, v) \in \overline{\Gamma}$ and $u_i(x) \leq v_i$ for every $i \in N$, then u(x) = v.

Corollary (Reny 1999)

Every payoff secure and reciprocally upper semicontinuous game is better-reply secure.

Proof.

- Let (x, v) be a Reny equilibrium: for every $i \in N$, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.
- Since the game is payoff secure, $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) \le v_i$.
- Thus, $u_i(x) \le v_i$ for every $i \in N$.
- By reciprocal upper semicontinuity, v = u(x): x is a Nash.

200

Point security

Lemma

Better-reply secure is equivalent to:

for every $x \in X$ which is not a Nash equilibrium:

 $\exists \varepsilon > 0$, $\exists U$ a neighborhood of x, $\exists d \in X$ s.t.:

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y) + \varepsilon \text{ for all } x' \in U.$

Point security

Lemma

Better-reply secure is equivalent to:

for every $x \in X$ which is not a Nash equilibrium:

 $\exists \varepsilon > 0$, $\exists U$ a neighborhood of x, $\exists d \in X$ s.t.:

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y) + \varepsilon \text{ for all } x' \in U.$

Theorem (McLennan et al, 2011)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

 $\exists U \text{ a neighborhood of } x, \exists d \in X \text{ s.t.:}$

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y), \forall x' \in U.$

Point security

Lemma

Better-reply secure is equivalent to:

for every $x \in X$ which is not a Nash equilibrium:

 $\exists \varepsilon > 0$, $\exists U$ a neighborhood of x, $\exists d \in X$ s.t.:

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y) + \varepsilon \text{ for all } x' \in U.$

Theorem (McLennan et al, 2011)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

 $\exists U \text{ a neighborhood of } x, \exists d \in X \text{ s.t.:}$

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y), \forall x' \in U.$

 The above condition is called point security and has the advantage to be ordinal.

Point security

Lemma

Better-reply secure is equivalent to:

for every $x \in X$ which is not a Nash equilibrium:

 $\exists \varepsilon > 0$, $\exists U$ a neighborhood of x, $\exists d \in X$ s.t.:

 $\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y) + \varepsilon \text{ for all } x' \in U.$

Theorem (McLennan et al, 2011)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

 $\exists U \text{ a neighborhood of } x, \exists d \in X \text{ s.t.:}$

$$\forall y \in U, \exists i \in N \text{ s.t. } u_i(d_i, x'_{-i}) > u_i(y), \forall x' \in U.$$

- The above condition is called point security and has the advantage to be ordinal.
- It has been extended, by McLennan et al to multiple security.

A correspondence is Kakutani if it is closed $\neq \emptyset$ and convex valued.

Theorem (Barelli and Meneghel 2013)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

```
\forall y \in U, \exists i \in N \text{ s.t.: } u_i(\mathbf{d}_i, \mathbf{x}'_{-i}) > u_i(y), \forall \mathbf{x}' \in U \text{ and } \forall \mathbf{d}_i \in \phi_i(\mathbf{x}')
```

A correspondence is Kakutani if it is closed $\neq \emptyset$ and convex valued.

Theorem (Barelli and Meneghel 2013)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

 $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.

$$\forall y \in U, \exists i \in N \text{ s.t.: } u_i(\mathbf{d}_i, x'_{-i}) > u_i(y), \forall x' \in U \text{ and } \forall \mathbf{d}_i \in \phi_i(x')$$

• The above condition is called correspondence security.

A correspondence is Kakutani if it is closed $\neq \emptyset$ and convex valued.

Theorem (Barelli and Meneghel 2013)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

$$\forall y \in U, \exists i \in N \text{ s.t.: } u_i(\mathbf{d}_i, x'_{-i}) > u_i(y), \forall x' \in U \text{ and } \forall \mathbf{d}_i \in \phi_i(x')$$

- The above condition is called correspondence security.
- If $\phi(x') = d$ for all $x' \in U$, we obtain point security.

A correspondence is Kakutani if it is closed $\neq \emptyset$ and convex valued.

Theorem (Barelli and Meneghel 2013)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

$$\forall y \in U, \ \exists i \in \mathbb{N} \ s.t.: \ u_i(\mathbf{d}_i, x'_{-i}) > u_i(y), \ \forall x' \in U \ and \ \forall \mathbf{d}_i \in \phi_i(x')$$

- The above condition is called correspondence security.
- If $\phi(x') = d$ for all $x' \in U$, we obtain point security.
- It is an extension of McLennan et al 2011 multiple security.

A correspondence is Kakutani if it is closed $\neq \emptyset$ and convex valued.

Theorem (Barelli and Meneghel 2013)

A quasi-concave and compact game admits a Nash equilibrium if: for every $x \in X$ which is not a Nash equilibrium:

$$\forall y \in U, \exists i \in N \text{ s.t.: } u_i(\mathbf{d}_i, x'_{-i}) > u_i(y), \forall x' \in U \text{ and } \forall \mathbf{d}_i \in \phi_i(x')$$

- The above condition is called correspondence security.
- If $\phi(x') = d$ for all $x' \in U$, we obtain point security.
- It is an extension of McLennan et al 2011 multiple security.
- The result is extendable to games with ordinal preferences (Barelli and Soza 2009, Reny 2015).

Define the following regularization of u_i (introduced by Carmona):

$$\underline{\underline{u_i}}(d_i,x_{-i}) := \sup_{U \in \mathcal{V}(\mathbf{x})} \sup_{\phi_i \in \mathbf{W}_U(d_i,x_{-i})} \inf_{x' \in \mathbf{U},d_i' \in \phi_i(\mathbf{x}')} u_i(d_i',x_{-i}'),$$

where $W_U(d_i, x_{-i})$ is the set Kakutani maps ϕ_i from U to X_i such that $d_i \in \Phi_i(x_{-i})$ and

Define the following regularization of u_i (introduced by Carmona):

$$\underline{\underline{u_i}}(d_i,x_{-i}) := \sup_{U \in \mathcal{V}(\mathbf{x})} \sup_{\phi_i \in W_U(d_i,x_{-i})} \inf_{\mathbf{x}' \in U, d_i' \in \phi_i(\mathbf{x}')} u_i(d_i',x_{-i}'),$$

where $W_U(d_i, x_{-i})$ is the set Kakutani maps ϕ_i from U to X_i such that $d_i \in \Phi_i(x_{-i})$ and $\mathcal{V}(x)$ is the set of open neighborhood of x.

Define the following regularization of u_i (introduced by Carmona):

$$\underline{\underline{u_i}}(d_i,x_{-i}) := \sup_{U \in \mathcal{V}(\mathbf{x})} \sup_{\phi_i \in W_U(d_i,x_{-i})} \inf_{\mathbf{x}' \in U, d_i' \in \phi_i(\mathbf{x}')} u_i(d_i',x_{-i}'),$$

where $W_U(d_i, x_{-i})$ is the set Kakutani maps ϕ_i from U to X_i such that $d_i \in \Phi_i(x_{-i})$ and $\mathcal{V}(x)$ is the set of open neighborhood of x.

Theorem (Bich Laraki 2012, 2016b)

For any quasiconcave compact game G, there is $(x, v) \in \overline{\Gamma}$ such that $\forall i \in \mathbb{N}$, $\sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}) \leq v_i$.

Define the following regularization of u_i (introduced by Carmona):

$$\underline{\underline{u_i}}(d_i,x_{-i}) := \sup_{U \in \mathcal{V}(\mathbf{x})} \sup_{\phi_i \in W_U(d_i,x_{-i})} \inf_{x' \in U, d_i' \in \phi_i(\mathbf{x}')} u_i(d_i',x_{-i}'),$$

where $W_U(d_i, x_{-i})$ is the set Kakutani maps ϕ_i from U to X_i such that $d_i \in \Phi_i(x_{-i})$ and $\mathcal{V}(x)$ is the set of open neighborhood of x.

Theorem (Bich Laraki 2012, 2016b)

For any quasiconcave compact game G, there is $(x,v) \in \overline{\Gamma}$ such that $\forall i \in N$, $\sup_{d_i \in X_i} \underline{\underline{u_i}}(d_i,x_{-i}) \leq v_i$.

G is correspondence payoff secure if for all d_i and x_{-i} : $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$

Define the following regularization of u_i (introduced by Carmona):

$$\underline{\underline{u_i}}(d_i,x_{-i}) := \sup_{U \in \mathcal{V}(\mathbf{x})} \sup_{\phi_i \in W_U(d_i,x_{-i})} \inf_{x' \in U,d_i' \in \phi_i(\mathbf{x}')} u_i(d_i',x_{-i}'),$$

where $W_U(d_i, x_{-i})$ is the set Kakutani maps ϕ_i from U to X_i such that $d_i \in \Phi_i(x_{-i})$ and $\mathcal{V}(x)$ is the set of open neighborhood of x.

Theorem (Bich Laraki 2012, 2016b)

For any quasiconcave compact game G, there is $(x, v) \in \overline{\Gamma}$ such that $\forall i \in N$, $\sup_{d_i \in X_i} \underline{\underline{u_i}}(d_i, x_{-i}) \leq v_i$.

G is correspondence payoff secure if for all
$$d_i$$
 and x_{-i} : $\sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i})$

Corollary (Extending Bagh and Joffre 2006)

Every correspondence payoff secure and reciprocally upper semicontinuous game is correspondence secure.

Some players continuous

• What happens if some players have continuous best replies?

Some players continuous

- What happens if some players have continuous best replies?
- In that case, it seems natural that discontinuity conditions be stated only with players for which the best replies are discontinuous!

Some players continuous

- What happens if some players have continuous best replies?
- In that case, it seems natural that discontinuity conditions be stated only with players for which the best replies are discontinuous
- For any subset I of the set of the players N, let B_I denote the set of strategies at which every player $j \in N/I$ is best replying:

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I\}$$

• What happens if some players have continuous best replies?

- In that case, it seems natural that discontinuity conditions be stated only with players for which the best replies are discontinuous
- For any subset I of the set of the players N, let B_I denote the set of strategies at which every player $j \in N/I$ is best replying:

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

• Note that $B_N = X$ and $B_\emptyset = \text{set of Nash equilibria}$.

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if: (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

```
\forall y \in U \cap B_I, \exists i \in N \text{ s.t.}:
```

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

$$\forall y \in U \cap B_I$$
, $\exists i \in N \text{ s.t.}$:

$$u_i(d_i, x'_{-i}) > u_i(y), \ \forall x' \in U \cap B_I \ and \ \forall d_i \in \phi_i(x')$$
.

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if:

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

$$\forall y \in U \cap B_I$$
, $\exists i \in N \text{ s.t.}$:
 $u_i(d_i, x'_{-i}) > u_i(y)$, $\forall x' \in U \cap B_I \text{ and } \forall d_i \in \phi_i(x')$.

• The result is first proved for point-security $\phi(x) = d$ for some fixed $d \in X$. The proof cleverly combine ideas from previous papers

$$B_I = \{x \in X : u_j(x_j, x_{-j}) \ge u_j(y_j, x_{-j}) : \forall j \in N/I \}$$

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if:

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

 $\forall y \in U \cap B_I$, $\exists i \in N \text{ s.t.}$: $u_i(d_i, x'_{-i}) > u_i(y)$, $\forall x' \in U \cap B_I \text{ and } \forall d_i \in \phi_i(x')$.

- The result is first proved for point-security $\phi(x) = d$ for some fixed $d \in X$. The proof cleverly combine ideas from previous papers
- The theorem is deduced by constructing a surrogate game G^* which is point secure when G is correspondence secure and with the same set of Nash equilibria as G.

Theorem (Reny 2015)

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

```
\forall y \in U \cap B_I
```

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if:

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

 $\forall y \in U \cap B_I \text{ and } \forall \text{ neighborhood } V \text{ of } y, \exists y' \in V, \exists i \in N \text{ s.t.}$:

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if:

- (1) $\exists I \subset N$ such that $\forall j \in N/I$, j's best reply is Kakutani;
- (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.:

 $\forall y \in U \cap B_I \text{ and } \forall \text{ neighborhood } V \text{ of } y, \exists y' \in V, \exists i \in N \text{ s.t.}$:

 $u_i(d_i, x'_{-i}) > u_i(y'), \ \forall x' \in U \cap B_I \ and \ \forall d_i \in \phi_i(x')$.

Theorem (Reny 2015)

A quasi-concave and compact game admits a Nash equilibrium if: (1) $\exists I \subset \mathbb{N}$ such that $\forall j \in \mathbb{N}/I$, j's best reply is Kakutani; (2) $\forall x \in X$ which is not a Nash equilibrium: $\exists U$ a neighborhood of x, $\exists \phi$ a Kakutani correspondence from U to X s.t.: $\forall y \in U \cap B_I$ and \forall neighborhood V of y, $\exists y' \in V$, $\exists i \in \mathbb{N}$ s.t.: $u_i(d_i, x'_{-i}) > u_i(y')$, $\forall x' \in U \cap B_I$ and $\forall d_i \in \phi_i(x')$.

• Reny proved this and the last theorem for ordinal preferences (not necessarily representable by a utility function).

Theorem (Reny 2015)

```
A quasi-concave and compact game admits a Nash equilibrium if: (1) \exists I \subset N such that \forall j \in N/I, j's best reply is Kakutani; (2) \forall x \in X which is not a Nash equilibrium: \exists U a neighborhood of x, \exists \phi a Kakutani correspondence from U to X s.t.: \forall y \in U \cap B_I and \forall neighborhood V of y, \exists y' \in V, \exists i \in N s.t.: u_i(d_i, x'_{-i}) > u_i(y'), \forall x' \in U \cap B_I and \forall d_i \in \phi_i(x').
```

- Reny proved this and the last theorem for ordinal preferences (not necessarily representable by a utility function).
- All above results can be further extended to utilities (ordinal preferences) that are not quasi-concave (convex). The main idea goes back to Bich (2009).

Contents

- Introduction
- 2 Nash existence results in pure strategies
- 3 Approximate and sharing rule solutions in pure strategies
- 4 Existence of equilibria in mixed strategies
- 6 Applications

Definition

 $(x, v) \in \overline{\Gamma}$ is an approximate equilibrium if there is $\{x^n, \epsilon_n\}$ s.t.:

(i) x^n is an ϵ_n -equilibrium.

Definition

 $(x, v) \in \overline{\Gamma}$ is an approximate equilibrium if there is $\{x^n, \epsilon_n\}$ s.t.:

- (i) x^n is an ϵ_n -equilibrium.
- (ii) $(x^n, u(x^n))$ converges to (x, v) and $\epsilon_n > 0$ converges to 0.

Definition

 $(x, v) \in \overline{\Gamma}$ is an approximate equilibrium if there is $\{x^n, \epsilon_n\}$ s.t.:

- (i) x^n is an ϵ_n -equilibrium.
- (ii) $(x^n, u(x^n))$ converges to (x, v) and $\epsilon_n > 0$ converges to 0.

Let
$$V_i(x_{-i}) = \sup_{d_i \in X_i} u_i(d_i, x_{-i}).$$

Definition

 $(x, v) \in \overline{\Gamma}$ is an approximate equilibrium if there is $\{x^n, \epsilon_n\}$ s.t.:

- (i) x^n is an ϵ_n -equilibrium.
- (ii) $(x^n, u(x^n))$ converges to (x, v) and $\epsilon_n > 0$ converges to 0.

Let
$$V_i(x_{-i}) = \sup_{d_i \in X_i} u_i(d_i, x_{-i}).$$

Recall that a game is payoff secure if for every i,

$$V_i(x_{-i}) = \sup_{d: \in X_i} u_i(d_i, x_{-i}).$$

Definition

 $(x, v) \in \overline{\Gamma}$ is an approximate equilibrium if there is $\{x^n, \epsilon_n\}$ s.t.:

- (i) x^n is an ϵ_n -equilibrium.
- (ii) $(x^n, u(x^n))$ converges to (x, v) and $\epsilon_n > 0$ converges to 0.

Let $V_i(x_{-i}) = \sup_{d_i \in X_i} u_i(d_i, x_{-i}).$

Recall that a game is payoff secure if for every i,

$$V_i(x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Theorem (Prokopovych 2011)

Any payoff secure quasiconcave compact game G such that V_i is continuous for every i admits an approximate equilibrium.

Sharing rule pure equilibrium

Definition

 $(x, v) \in \overline{\Gamma}$ is a sharing rule pure equilibrium of G if

Sharing rule pure equilibrium

Definition

 $(x, v) \in \overline{\Gamma}$ is a sharing rule pure equilibrium of G if x is a Nash equilibrium in pure strategies of the auxiliary games $\widetilde{G} = ((X_i)_{i \in N}, (q_i)_{i \in N})$, where

Sharing rule pure equilibrium

Definition

 $(x, v) \in \overline{\Gamma}$ is a sharing rule pure equilibrium of G if x is a Nash equilibrium in pure strategies of the auxiliary games $\tilde{G} = ((X_i)_{i \in N}, (q_i)_{i \in N})$, where (i) v = g(x).

Sharing rule pure equilibrium

Definition

 $(x, v) \in \overline{\Gamma}$ is a sharing rule pure equilibrium of G if x is a Nash equilibrium in pure strategies of the auxiliary games $\widetilde{G} = ((X_i)_{i \in N}, (q_i)_{i \in N})$, where

- (i) v = q(x).
- (ii) For every $y \in X$,

$$q(y) \in \overline{\Gamma}_y$$

Theorem (Bich Laraki 2016a)

Any quasiconcave compact game G admits a sharing rule equilibrium in pure strategies.

Proof:

Theorem (Bich Laraki 2016a)

Any quasiconcave compact game G admits a sharing rule equilibrium in pure strategies.

Proof:

• Let $(x, v) \in \overline{\Gamma}$ be a Reny equilibrium.

Theorem (Bich Laraki 2016a)

Any quasiconcave compact game G admits a sharing rule equilibrium in pure strategies.

Proof:

- Let $(x, v) \in \overline{\Gamma}$ be a Reny equilibrium.
- Let $\underline{S}(d_i, x_{-i})$ be the space of sequences $(x_{-i}^n)_{n \in \mathbb{N}}$ converging to x_{-i} such that $\lim_{n \to +\infty} u_i(d_i, x_{-i}^n) = \underline{u}_i(d_i, x_{-i})$.

Theorem (Bich Laraki 2016a)

Any quasiconcave compact game G admits a sharing rule equilibrium in pure strategies.

Proof:

- Let $(x, v) \in \overline{\Gamma}$ be a Reny equilibrium.
- Let $\underline{S}(d_i, x_{-i})$ be the space of sequences $(x_{-i}^n)_{n \in \mathbb{N}}$ converging to x_{-i} such that $\lim_{n \to +\infty} u_i(d_i, x_{-i}^n) = \underline{u}_i(d_i, x_{-i})$.
- Define the sharing rule $q: X \to \mathbb{R}^N$ by

$$q(y) = \begin{cases} v & \text{if } y = x, \\ \text{limit point of } (u(d_i, x_{-i}^n)) & \text{if } y = (d_i, x_{-i}) \ (x_{-i}^n) \in \underline{\mathcal{S}}(d_i, x_{-i}), \\ q(y) = u(y) & \text{otherwise.} \end{cases}$$

Theorem (Bich Laraki 2016a)

Any quasiconcave compact game G admits a sharing rule equilibrium in pure strategies.

Proof:

- Let $(x, v) \in \overline{\Gamma}$ be a Reny equilibrium.
- Let $\underline{S}(d_i, x_{-i})$ be the space of sequences $(x_{-i}^n)_{n \in \mathbb{N}}$ converging to x_{-i} such that $\lim_{n \to +\infty} u_i(d_i, x_{-i}^n) = \underline{u}_i(d_i, x_{-i})$.
- Define the sharing rule $q: X \to \mathbb{R}^N$ by

$$q(y) = \begin{cases} v & \text{if } y = x, \\ \text{limit point of } (u(d_i, x_{-i}^n)) & \text{if } y = (d_i, x_{-i}) \ (x_{-i}^n) \in \underline{\mathcal{S}}(d_i, x_{-i}), \\ q(y) = u(y) & \text{otherwise.} \end{cases}$$

• Show that (x, v) is a sharing rule equilibrium associated to q.

Existence of approximate equilibria

Definition

A game *G* is approximately better-reply secure if for every $(x, v) \in \overline{\Gamma}$:

whenever x is not an approximate equilibrium profile, then there is i and $d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Existence of approximate equilibria

Definition

A game G is approximately better-reply secure if for every $(x, v) \in \overline{\Gamma}$:

whenever x is not an approximate equilibrium profile, then there is i and $d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Corollary (Bich Laraki 2016a)

Any approximately better-reply secure quasiconcave compact game G admits an approximated equilibrium.

Existence of approximate equilibria

Definition

A game *G* is approximately better-reply secure if for every $(x, v) \in \overline{\Gamma}$:

whenever x is not an approximate equilibrium profile, then there is i and $d_i \in X_i$ such that $u_i(d_i, x_{-i}) > v_i$.

Corollary (Bich Laraki 2016a)

Any approximately better-reply secure quasiconcave compact game G admits an approximated equilibrium.

Proof: Approximately better-reply secure <=> Reny and approximated equilibrium profiles coincide.

Recall that G is payoff secure if:

$$V_i(x_{-i}) := \sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Corollary (Prokopovych 2011)

A payoff-secure compact game G such that V_i is continuous for every i is approximately better-reply secure.

Recall that G is payoff secure if:

$$V_i(x_{-i}) := \sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Corollary (Prokopovych 2011)

A payoff-secure compact game G such that V_i is continuous for every i is approximately better-reply secure.

Proof.

• Let (x, v) be a Reny equilibrium.

Recall that G is payoff secure if:

$$V_i(x_{-i}) := \sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Corollary (Prokopovych 2011)

A payoff-secure compact game G such that V_i is continuous for every i is approximately better-reply secure.

- Let (x, v) be a Reny equilibrium.
- Since G is payoff secure at x, one has $V_i(x_{-i}) \le v_i$.

Recall that G is payoff secure if:

$$V_i(x_{-i}) := \sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Corollary (Prokopovych 2011)

A payoff-secure compact game G such that V_i is continuous for every i is approximately better-reply secure.

- Let (x, v) be a Reny equilibrium.
- Since G is payoff secure at x, one has $V_i(x_{-i}) \le v_i$.
- From the continuity of V_i , there exists x' close to x such that $|v_i u_i(x')| \le \frac{\epsilon}{2}$ and $|V_i(x'_{-i}) V_i(x_{-i})| \le \frac{\epsilon}{2}$.

Recall that G is payoff secure if:

$$V_i(x_{-i}) := \sup_{d_i \in X_i} u_i(d_i, x_{-i}) = \sup_{d_i \in X_i} \underline{u_i}(d_i, x_{-i}).$$

Corollary (Prokopovych 2011)

A payoff-secure compact game G such that V_i is continuous for every i is approximately better-reply secure.

- Let (x, v) be a Reny equilibrium.
- Since G is payoff secure at x, one has $V_i(x_{-i}) \le v_i$.
- From the continuity of V_i , there exists x' close to x such that $|v_i u_i(x')| \le \frac{\epsilon}{2}$ and $|V_i(x'_{-i}) V_i(x_{-i})| \le \frac{\epsilon}{2}$.
- x' is an ϵ -equilibrium.

The strategy set of player i is [0,1] and his payoff is:

$$u_{i}(x_{i}, x_{-i}) = \begin{cases} f_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) > x_{i}, \\ g_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) < x_{i}, \\ h_{i}(x_{i}, x_{-i}) & \text{if } \phi(x_{-i}) = x_{i}, \end{cases}$$

The strategy set of player i is [0,1] and his payoff is:

$$u_{i}(x_{i}, x_{-i}) = \begin{cases} f_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) > x_{i}, \\ g_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) < x_{i}, \\ h_{i}(x_{i}, x_{-i}) & \text{if } \phi(x_{-i}) = x_{i}, \end{cases}$$

where:

• f_i , g_i be continuous mappings from $[0,1] \times [0,1]$ to R.

The strategy set of player i is [0,1] and his payoff is:

$$u_{i}(x_{i}, x_{-i}) = \begin{cases} f_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) > x_{i}, \\ g_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) < x_{i}, \\ h_{i}(x_{i}, x_{-i}) & \text{if } \phi(x_{-i}) = x_{i}, \end{cases}$$

where:

- f_i , g_i be continuous mappings from $[0,1] \times [0,1]$ to R.
- $h_i: [0,1]^N \to \mathbf{R}$ is a bounded mapping.

The strategy set of player i is [0,1] and his payoff is:

$$u_{i}(x_{i}, x_{-i}) = \begin{cases} f_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) > x_{i}, \\ g_{i}(x_{i}, \phi(x_{-i})) & \text{if } \phi(x_{-i}) < x_{i}, \\ h_{i}(x_{i}, x_{-i}) & \text{if } \phi(x_{-i}) = x_{i}, \end{cases}$$

where:

- f_i , g_i be continuous mappings from $[0,1] \times [0,1]$ to R.
- $h_i: [0,1]^N \to \mathbf{R}$ is a bounded mapping.
- $\phi: [0,1]^{N-1} \rightarrow [0,1]$ is a continuous "aggregation" function, such as $\phi(x_{-i}) = \max_{j \neq i} x_j$, $\min_{j \neq i} x_j$, $\frac{1}{N-1} \sum_{j \neq i} x_j$, or the k-th highest value of $\{x_1, ..., x_{N-1}\}$ for k = 1, ..., N-1.

Example: in first price auctions, $\phi(x_{-i}) = \max_{j \neq i} x_j$, $f_i = 0$, $g_i = v_i - \max_{j \neq i} x_j$ and $h_i = \frac{g_i}{k}$ where $k = |\{j : x_j = \max_i x_i\}|$ is the cardinal of the set of players with maximum bid.

Example: in first price auctions, $\phi(x_{-i}) = \max_{j \neq i} x_j$, $f_i = 0$, $g_i = v_i - \max_{j \neq i} x_j$ and $h_i = \frac{g_i}{k}$ where $k = |\{j : x_j = \max_i x_i\}|$ is the cardinal of the set of players with maximum bid.

Theorem (Bich Laraki 2016a)

Any quasiconcave diagonal game satisfying condition (C):

 $\forall x_i = \phi(x_{-i})$: $h_i(x)$ is a strict convex combination of $f_i(x_i, x_i)$ and $g_i(x_i, x_i)$,

is approximately better-reply secure.

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_i\in[0,1]}u_i(d_i,x_{-i})\leq v_i,\ i\in N.$$

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_i\in[0,1]}u_i(d_i,x_{-i})\leq v_i,\ i\in N.$$

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_{i}\in[0,1]}u_{i}(d_{i},x_{-i})\leq v_{i},\ i\in N.$$

Let prove that x is an approximate equilibrium profile:

• Case 1: $\forall i, x_i \neq \phi(x_{-i})$. Payoffs are continuous at x, v = u(x). Reny equation implies that x is a Nash Eq.

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_{i}\in[0,1]}u_{i}(d_{i},x_{-i})\leq v_{i},\ i\in N.$$

- Case 1: $\forall i, x_i \neq \phi(x_{-i})$. Payoffs are continuous at x, v = u(x). Reny equation implies that x is a Nash Eq.
- Case 2: $\exists i$ s.t. $x_i = \phi(x_{-i}) \in]0, 1[$. Marginal continuity holds at x, so (x, v) is an approximate Eq.

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_{i}\in[0,1]}u_{i}(d_{i},x_{-i})\leq v_{i},\ i\in N.$$

- Case 1: $\forall i, x_i \neq \phi(x_{-i})$. Payoffs are continuous at x, v = u(x). Reny equation implies that x is a Nash Eq.
- Case 2: $\exists i$ s.t. $x_i = \phi(x_{-i}) \in]0, 1[$. Marginal continuity holds at x, so (x, v) is an approximate Eq.
- Case 3: $\exists i$ s.t. $x_i = \phi(x_{-i}) = 0$. Consider $(x^n, u(x^n)) \to (x, v)$. Define (y^n) as: if $v_j \leq f_j(0)$, $y_j^n := 0$ otherwise, $y_j^n := x_j^n$. Check that y^n is an ε^n -Nash Eq.

Under Assumption (C), the game is payoff secure. Consequently, if $(x, v) \in \overline{\Gamma}$ is a Reny Eq then

$$\sup_{d_{i}\in[0,1]}u_{i}(d_{i},x_{-i})\leq v_{i},\ i\in N.$$

- Case 1: $\forall i, x_i \neq \phi(x_{-i})$. Payoffs are continuous at x, v = u(x). Reny equation implies that x is a Nash Eq.
- Case 2: $\exists i$ s.t. $x_i = \phi(x_{-i}) \in]0, 1[$. Marginal continuity holds at x, so (x, v) is an approximate Eq.
- Case 3: $\exists i$ s.t. $x_i = \phi(x_{-i}) = 0$. Consider $(x^n, u(x^n)) \to (x, v)$. Define (y^n) as: if $v_j \leq f_j(0)$, $y_j^n := 0$ otherwise, $y_j^n := x_j^n$. Check that y^n is an ε^n -Nash Eq.
- Case 4: $\exists i$ s.t. $x_i = \phi(x_{-i}) = 1$. Similar to case 3.

For games in pure strategies:

• Nash Equilibria C Approximate equilibria Reny equilibria sharing rule equilibria.

- Nash Equilibria ⊂ Approximate equilibria ⊂ Reny equilibria ⊂ sharing rule equilibria.
- Set of Reny Equilibria $\neq \emptyset$ if game quasi-concave compact.

- Nash Equilibria ⊂ Approximate equilibria ⊂ Reny equilibria ⊂ sharing rule equilibria.
- Set of Reny Equilibria $\neq \emptyset$ if game quasi-concave compact.
- A game is better reply secure <=> Nash = Reny.

- Nash Equilibria
 C Approximate equilibria
 C Reny equilibria
 c sharing rule equilibria.
- Set of Reny Equilibria $\neq \emptyset$ if game quasi-concave compact.
- A game is better reply secure <=> Nash = Reny.
- A game is approx better reply secure <=> approximate =
 Reny.

- Nash Equilibria ⊂ Approximate equilibria ⊂ Reny equilibria ⊂ sharing rule equilibria.
- Set of Reny Equilibria $\neq \emptyset$ if game quasi-concave compact.
- A game is better reply secure <=> Nash = Reny.
- A game is approx better reply secure <=> approximate = Reny.
- Reny equilibrium can be refined using correspondence security.

Contents

- Introduction
- 2 Nash existence results in pure strategies
- 3 Approximate and sharing rule solutions in pure strategies
- 4 Existence of equilibria in mixed strategies
- 6 Applications

Simon-Zame's theorem

Simon-Zame's theorem

 \bullet X_i is compact-metrizable and utilities measurable.

Simon-Zame's theorem

- X_i is compact-metrizable and utilities measurable.
- $M_i = \Delta(X_i)$ is the set of Borel probabilities on X_i (compact-metrizable for weak* topology). $M = \Pi_i M_i$

Simon-Zame's theorem

- X_i is compact-metrizable and utilities measurable.
- $M_i = \Delta(X_i)$ is the set of Borel probabilities on X_i (compact-metrizable for weak* topology). $M = \Pi_i M_i$

Definition

 (σ,q) is a sharing rule mixed solution of G if $\sigma \in M$ is a mixed equilibrium of the auxiliary game $\tilde{G}=((X_i)_{i\in N},(q_i)_{i\in N})$ where utilities $q=(q_i)_{i\in N}$ must satisfy: (SZ) $\forall y\in X,\ q(y)\in co\overline{\Gamma}_y$.

Simon-Zame's theorem

- X_i is compact-metrizable and utilities measurable.
- $M_i = \Delta(X_i)$ is the set of Borel probabilities on X_i (compact-metrizable for weak* topology). $M = \Pi_i M_i$

Definition

 (σ, q) is a sharing rule mixed solution of G if $\sigma \in M$ is a mixed equilibrium of the auxiliary game $\tilde{G} = ((X_i)_{i \in N}, (q_i)_{i \in N})$ where utilities $q = (q_i)_{i \in N}$ must satisfy: $(SZ) \ \forall y \in X, \ q(y) \in co\overline{\Gamma}_y$.

Theorem (Simon and Zame 1990)

Any compact-metric game admits a sharing mixed solution.

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m, v) \in \overline{\Gamma'}$ is a finite deviation equilibrium if

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m, v) \in \overline{\Gamma'}$ is a finite deviation equilibrium if for every open set $V_{m,v}$ that contains (m, v)

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m, v) \in \overline{\Gamma'}$ is a finite deviation equilibrium if for every open set $V_{m,v}$ that contains (m, v) and every finite sets $D_i \subset M_i$, i = 1, ..., N,

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m, v) \in \overline{\Gamma'}$ is a finite deviation equilibrium if for every open set $V_{m,v}$ that contains (m, v) and every finite sets $D_i \subset M_i$, i = 1, ..., N, there exist finite sets $D'_i \subset M_i$ containing D_i ,

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m,v)\in \overline{\Gamma'}$ is a finite deviation equilibrium if for every open set $V_{m,v}$ that contains (m,v) and every finite sets $D_i\subset M_i$, i=1,...,N, there exist finite sets $D_i'\subset M_i$ containing D_i , and there is m', a mixed Nash equilibrium of the game restricted to D',

G is a compact metric game, G' its mixed extension and $\overline{\Gamma'}$ the closure of the graph of G'.

Definition

 $(m,v) \in \overline{\Gamma'}$ is a finite deviation equilibrium if for every open set $V_{m,v}$ that contains (m,v) and every finite sets $D_i \subset M_i$, i=1,...,N, there exist finite sets $D_i' \subset M_i$ containing D_i , and there is m', a mixed Nash equilibrium of the game restricted to D', such that $(m',u(m')) \in V_{m,v}$.

Theorem

Any compact metric game G admits a finite deviation equilibrium.

Theorem

Any compact metric game G admits a finite deviation equilibrium.

Proof:

Theorem

Any compact metric game G admits a finite deviation equilibrium.

Proof:

• Let \mathcal{D} be the set of all finite subsets $\prod_{i \in N} D_i$ of M.

Theorem

Any compact metric game G admits a finite deviation equilibrium.

Proof:

• Let \mathcal{D} be the set of all finite subsets $\prod_{i \in N} D_i$ of M.

$\mathsf{Theorem}$

Any compact metric game G admits a finite deviation equilibrium.

Proof:

- Let \mathcal{D} be the set of all finite subsets $\prod_{i \in N} D_i$ of M.
- To every D, one can associate $(m^D, u(m^D))$ where m^D is a Nash mixed equilibrium of the game restricted to D. This defines a mapping from \mathcal{D} to $\overline{\Gamma}^I$, called a net.

$\mathsf{Theorem}$

Any compact metric game G admits a finite deviation equilibrium.

Proof:

- Let \mathcal{D} be the set of all finite subsets $\prod_{i \in N} D_i$ of M.
- To every D, one can associate $(m^D, u(m^D))$ where m^D is a Nash mixed equilibrium of the game restricted to D. This defines a mapping from \mathcal{D} to $\overline{\Gamma}$, called a net.
- Any limit point (m, v) of the net $(m^D, u(m^D))_{D \in \mathcal{D}}$ is a FDE.

Theorem

In compact-metric games, any finite mixed deviation equilibrium is

- (A) a Reny-equilibrium of the mixed extension of the game and
- (B) is a solution à la Simon-Zame.

Theorem

In compact-metric games, any finite mixed deviation equilibrium is

- (A) a Reny-equilibrium of the mixed extension of the game and
- (B) is a solution à la Simon-Zame.

Proof of A: Since for every $d \in M$, and every neighborhood \mathcal{N} of (m, v), there is $(m^d, u(m^d))$ in \mathcal{N} such that for every i, $u_i(d_i, m_{-i}^d) \leq u_i(m^d)$, at the limit, (m, v) is a Reny equilibrium.

Theorem

In compact-metric games, any finite mixed deviation equilibrium is

- (A) a Reny-equilibrium of the mixed extension of the game and
- (B) is a solution à la Simon-Zame.

Proof of A: Since for every $d \in M$, and every neighborhood \mathcal{N} of (m, v), there is $(m^d, u(m^d))$ in \mathcal{N} such that for every i, $u_i(d_i, m_{-i}^d) \leq u_i(m^d)$, at the limit, (m, v) is a Reny equilibrium. Proof of B: adapt Simon and Zame's proof.

Theorem

In compact-metric games, any finite mixed deviation equilibrium is

- (A) a Reny-equilibrium of the mixed extension of the game and
- (B) is a solution à la Simon-Zame.

Proof of A: Since for every $d \in M$, and every neighborhood \mathcal{N} of (m, v), there is $(m^d, u(m^d))$ in \mathcal{N} such that for every i, $u_i(d_i, m_{-i}^d) \leq u_i(m^d)$, at the limit, (m, v) is a Reny equilibrium. Proof of B: adapt Simon and Zame's proof.

Corollary

If G' is better-reply-secure, G has a Nash mixed equilibrium.

Approximate equilibrium

Theorem

In compact-metric games, any approximate mixed equilibrium is

- (A) a Reny-equilibrium of the mixed extension of the game and
- (B) is a solution à la Simon-Zame.

Approximate equilibrium

Theorem

In compact-metric games, any approximate mixed equilibrium is (A) a Reny-equilibrium of the mixed extension of the game and

(B) is a solution à la Simon-Zame.

Proof of A: Since for every ε , and every neighborhood \mathcal{N} of (m, v), there is $(m^{\varepsilon}, u(m^{\varepsilon}))$ in \mathcal{N} such that $\forall i$ and $\forall d$, $u_i(d_i, m_{-i}^{\varepsilon}) \leq u_i(m^{\varepsilon}) + \varepsilon$, at the limit (m, v) is a Reny equilibrium.

Approximate equilibrium

Theorem

In compact-metric games, any approximate mixed equilibrium is (A) a Reny-equilibrium of the mixed extension of the game and

(B) is a solution à la Simon-Zame.

Proof of A: Since for every ε , and every neighborhood $\mathcal N$ of (m,v), there is $(m^{\varepsilon}, u(m^{\varepsilon}))$ in $\mathcal N$ such that $\forall i$ and $\forall d$, $u_i(d_i, m_{-i}^{\varepsilon}) \leq u_i(m^{\varepsilon}) + \varepsilon$, at the limit (m, v) is a Reny equilibrium. Proof of B: adapt Simon and Zame's proof.

For compact metric games in mixed strategies:

For compact metric games in mixed strategies:

Nash ⊂ Approximate ⊂ { Reny Eq ∩ sharing rule mixed eq }

For compact metric games in mixed strategies:

- Nash ⊂ Approximate ⊂ { Reny Eq ∩ sharing rule mixed eq }
- Finite Deviation Eq ⊂ { Reny Eq ∩ sharing rule mixed eq }

For compact metric games in mixed strategies:

- Nash ⊂ Approximate ⊂ { Reny Eq ∩ sharing rule mixed eq }
- Finite Deviation Eq ⊂ { Reny Eq ∩ sharing rule mixed eq }
- Finite Deviation Eq $\neq \emptyset$.

Strategic approximation

Definition

A game G admits a (resp. weak) strategic approximation if: \exists a sequence of finite sets $D_n \subset M$ such that : all accumulation points of mixed Nash equilibria of the game restricted to D_n are (resp. approximate) mixed equilibria of G.

Strategic approximation

Definition

A game G admits a (resp. weak) strategic approximation if: \exists a sequence of finite sets $D_n \subset M$ such that : all accumulation points of mixed Nash equilibria of the game restricted to D_n are (resp. approximate) mixed equilibria of G.

Corollary (Reny 2011, Bich Laraki 2016a)

If G' is (resp. approximately) better-reply secure, then G has a (resp. weak) strategic approximation.

Strategic approximation

Definition

A game G admits a (resp. weak) strategic approximation if: \exists a sequence of finite sets $D_n \subset M$ such that : all accumulation points of mixed Nash equilibria of the game restricted to D_n are (resp. approximate) mixed equilibria of G.

Corollary (Reny 2011, Bich Laraki 2016a)

If G' is (resp. approximately) better-reply secure, then G has a (resp. weak) strategic approximation.

Proof: use the finite deviation equilibrium.

Contents

- Introduction
- 2 Nash existence results in pure strategies
- 3 Approximate and sharing rule solutions in pure strategies
- 4 Existence of equilibria in mixed strategies
- 6 Applications

Two player diagonal games

Theorem (Bich Laraki 2016a)

Any two player diagonal game (not necessarily quasi-concave) where h is continuous admits a weak strategic approximation.

Two player diagonal games

Theorem (Bich Laraki 2016a)

Any two player diagonal game (not necessarily quasi-concave) where h is continuous admits a weak strategic approximation.

Examples:

Bertrand Duopoly with Discontinuous Costs, Bertrand-Edgeworth Duopoly with Capacity constraints, Timing Games (silent or noisy).

Bayesian diagonal games

- At stage 0: a type $t = (t_1, ..., t_N) \in T = T_1 \times ... \times T_N$ is drawn according to some joint probability distribution p.
- At stage 1: each player i is privately informed of his own type t_i (correlations between types are allowed).
- At stage 2: each player i is asked to choose an element $x_i \in [0, 1]$ (interpreted as a bid).

Bayesian diagonal games

- At stage 0: a type $t = (t_1, ..., t_N) \in T = T_1 \times ... \times T_N$ is drawn according to some joint probability distribution p.
- At stage 1: each player i is privately informed of his own type t_i (correlations between types are allowed).
- At stage 2: each player i is asked to choose an element $x_i \in [0,1]$ (interpreted as a bid).

The payoff of player *i* is assumed of the form:

$$u_i(\mathbf{t}, x_i, x_{-i}) = \begin{cases} f_i(\mathbf{t}, x_i, \phi_i(x_{-i})) & \text{if } \phi_i(x_{-i}) > x_i, \\ g_i(\mathbf{t}, x_i \phi_i(x_{-i})) & \text{if } \phi_i(x_{-i}) < x_i, \\ h_i(\mathbf{t}, x_i, x_{-i}) & \text{if } \phi_i(x_{-i}) = x_i, \end{cases}$$

Bayesian diagonal games

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

(a)
$$f_i(t,0,0) \leq h_i(t,0,..,0) \leq g_i(t,0,0)$$
;

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

(a)
$$f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0);$$

(b1)
$$f_i(t,1) \geq h_i(t,1) \geq g_i(t,1)$$

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

- (a) $f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0)$;
- (b1) $f_i(t,1) \ge h_i(t,1) \ge g_i(t,1)$ or (b2) there is $\eta > 0$ such that there is always a best response of each type in $[0, 1 \eta]$;

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

- (a) $f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0)$;
- (b1) $f_i(t,1) \ge h_i(t,1) \ge g_i(t,1)$ or (b2) there is $\eta > 0$ such that there is always a best response of each type in $[0,1-\eta[$;
- (c1) there are only two players

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

- (a) $f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0)$;
- (b1) $f_i(t,1) \ge h_i(t,1) \ge g_i(t,1)$ or (b2) there is $\eta > 0$ such that there is always a best response of each type in $[0,1-\eta[$;
- (c1) there are only two players or (c2) values are private

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

Any Bayesian diagonal game admits a weak strategic approximation if for every i and t one has:

- (a) $f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0)$;
- (b1) $f_i(t,1) \ge h_i(t,1) \ge g_i(t,1)$ or (b2) there is $\eta > 0$ such that there is always a best response of each type in $[0,1-\eta[;$
- (c1) there are only two players or (c2) values are private

Examples: one unit auctions (first second, all-pay, double), multi-unit first price auctions.

The game is of private values if for every i, u_i depends only on its own type t_i and does not depend on t_{-i} .

Theorem (Bich Laraki 2016a)

Any Bayesian diagonal game admits a weak strategic approximation if for every i and t one has:

- (a) $f_i(t,0,0) \leq h_i(t,0,...,0) \leq g_i(t,0,0)$;
- (b1) $f_i(t,1) \ge h_i(t,1) \ge g_i(t,1)$ or (b2) there is $\eta > 0$ such that there is always a best response of each type in $[0,1-\eta[;$
- (c1) there are only two players or (c2) values are private

Examples: one unit auctions (first second, all-pay, double), multi-unit first price auctions.

Counter-example: without condition (a) or (b), we may have non-existence even if the game is zero-sum!

 We consider a zero-sum timing game with constant payoff functions f, g and h.

- We consider a zero-sum timing game with constant payoff functions f, g and h.
- Each player decide when to stop the game between 0 and 1.

- We consider a zero-sum timing game with constant payoff functions f, g and h.
- Each player decide when to stop the game between 0 and 1.
- Player 2 has two types A and B with equal probabilities.

- We consider a zero-sum timing game with constant payoff functions f, g and h.
- Each player decide when to stop the game between 0 and 1.
- Player 2 has two types A and B with equal probabilities.
- The player who stops first, alone, gets 1.

- We consider a zero-sum timing game with constant payoff functions f, g and h.
- Each player decide when to stop the game between 0 and 1.
- Player 2 has two types A and B with equal probabilities.
- The player who stops first, alone, gets 1.
- When the players stop simultaneously, if the type is A, player 1 gets h = 3, if the type is B, he gets h = -2.

- We consider a zero-sum timing game with constant payoff functions f, g and h.
- Each player decide when to stop the game between 0 and 1.
- Player 2 has two types A and B with equal probabilities.
- The player who stops first, alone, gets 1.
- When the players stop simultaneously, if the type is A, player 1 gets h = 3, if the type is B, he gets h = -2.
- The game does not have a value in mixed strategies (and so has no approximated equilibrium).

• Economic theory literature mainly focus on the existence of Nash equilibria.

- Economic theory literature mainly focus on the existence of Nash equilibria.
- They do not exist is many games of interest.

- Economic theory literature mainly focus on the existence of Nash equilibria.
- They do not exist is many games of interest.

This lecture:

- Economic theory literature mainly focus on the existence of Nash equilibria.
- They do not exist is many games of interest.

This lecture:

 Propose a unifying framework that links Simon-Zame and Reny in pure and mixed strategies,

- Economic theory literature mainly focus on the existence of Nash equilibria.
- They do not exist is many games of interest.

This lecture:

- Propose a unifying framework that links Simon-Zame and Reny in pure and mixed strategies,
- Apply it to derive new existence results of approximate equilibria.

References

- BAGH, & JOFRE (2006): Reciprocal Upper Semicontinuity and Better Reply Secure Games: A Comment, Econometrica.
- BARELLI & SOZA (2009): On the Existence of Nash Equilibria in Discontinuous and Qualitative Games, Report, University of Rochester.
- BARELLI, GOVINDAN & WILSON (2012): Competition for a Majority, Econometrica.
- BARELLI & MENEGHEL (2013), A Note on the Equilibrium Existence Problem in Discontinuous Games, Econometrica.
- BAYE, TIAN & J. ZHOU (1993): Characterizations of the Existence of Equilibria in Games With Discontinuous and Non-Quasiconcave Payoffs, Review of Economic Studies.
- BICH (2009): Existence of Pure Nash Equilibria in Discontinuous and Non Quasiconcave Games, International Journal of Game Theory.

References

- BICH & LARAKI (2012): A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games, Report, Paris School of Economics.
- BICH & LARAKI (2016a): On the Existence of Approximate Equilibria and Sharing Rule Solutions in Discontinuous Games, Theoretical Economics.
- BICH & LARAKI (2016b): Externalities in Economies with Endogenous Sharing Rules, Bulletin Economic Theory.
- CARMONA (2011): Understanding some Recent Existence Results for Discontinuous Games, *Economic Theory*.
- McLENNAN, MONTEIRO & TOURKY (2011): Games With Discontinuous Payoffs: a Strengthening of Reny's Existence Theorem, Econometrica.
- PROKOPOVYCH (2011): On Equilibrium Existence in Payoff Secure Games, Economic Theory.

References

- RENY (1999): On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games, *Econometrica*.
- RENY (2011): Strategic Approximations of Discontinuous Games, *Economic Theory*.
- RENY (2015): ?Nash equilibrium in discontinuous games, *Economic Theory*.
- SIMON & Zame (1990): Discontinuous Games and Endogenous Sharing Rules, *Econometrica*.