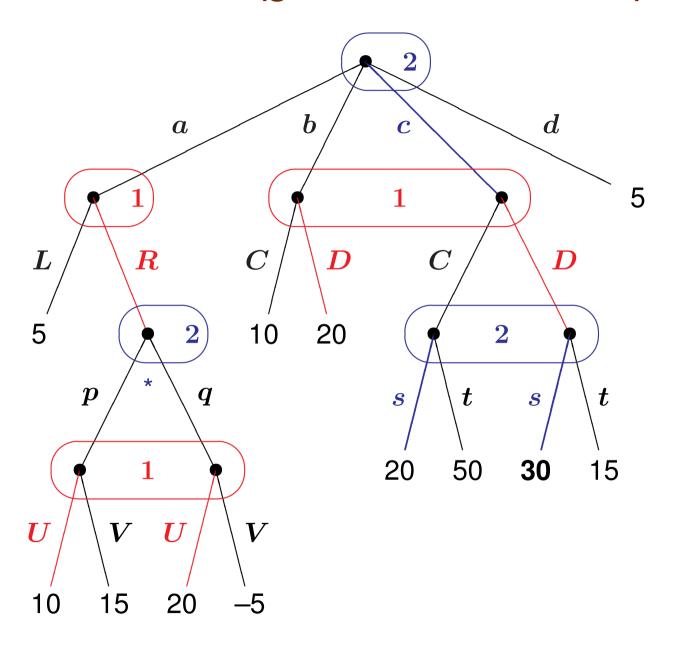
Efficient computation of equilibria for extensive games

Bernhard von Stengel

Department of Mathematics London School of Economics

stengel@nash.lse.ac.uk

Game tree (game in extensive form)



Strategic (or normal) form

Strategy of a player:

specifies a move for **every** information set of that player.

$oldsymbol{a}$	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	\boldsymbol{b}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{c}	\boldsymbol{c}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{d}	d	\overline{d}
p	$oldsymbol{p}$	$oldsymbol{q}$	$oldsymbol{q}$	$oldsymbol{p}$	$oldsymbol{p}$	$oldsymbol{q}$	$oldsymbol{q}$	$oldsymbol{p}$	$oldsymbol{p}$	$oldsymbol{q}$	$oldsymbol{q}$	\boldsymbol{p}	\boldsymbol{p}	$oldsymbol{q}$	$oldsymbol{q}$
s	$oldsymbol{t}$	\boldsymbol{s}	$oldsymbol{t}$												

```
5 10 10 10 10 20 50 20 50 5 5
L, U, C
                                                    5
         5 5
                  5 10 10 10 10 20 50 20 50 5 5 5
L, V, C
               5 5 20 20 20 20 30 15 30 15 5 5 5
L, U, D
               5 5 20 20 20 20 30 15 30 15 5 5 5
L, V, D
R, U, C
           10 20 20 10 10 10 10 20 50 20 50
                                                    5
[R,U,D]
         10 10 20 20 20 20 20 30 15 30 15
                                                   5
R, V, C
         20 20 -5 -5 10 10 10 10 20 50 20 50
         10 10 20 20 20 20 20 20 30 15 30
[R,V,D]
```

Reduced strategic form

Reduced strategy of a player:

specifies a move for every information set of that player, **except** for those information sets unreachable due to an **own** earlier

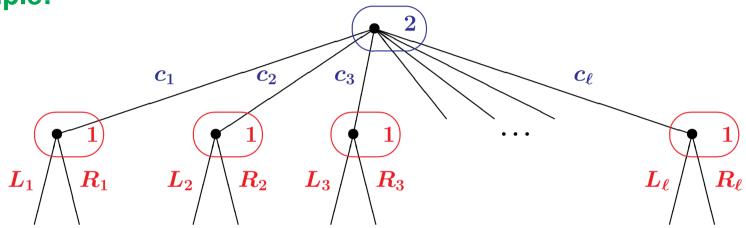
move (where we write * instead of a move).

	a, p, *	a,q,*	<i>b</i> , *, *	c,*,s	c,*,t	d,*,*
$oxed{L,*,C}$	5	5	10	20	50	5
$oxed{L,*,D}$	5	5	20	30	15	5
$\left R,U,C ight $	10	20	10	20	50	5
ig R,U,Dig	10	20	20	30	15	5
R, V, C	15	- 5	10	20	50	5
$oxed{R,V,D}$	15	– 5	20	30	15	5

Exponential blowup of strategic form

number of pure strategies typically **exponential** in number of information sets.

Example:



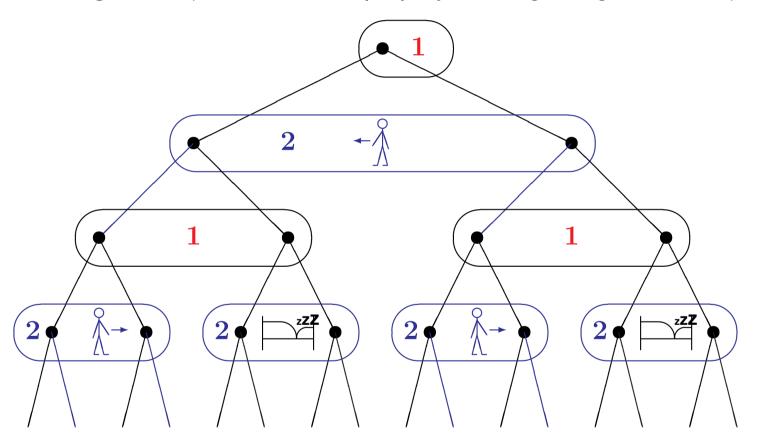
number of information sets $= \ell$, number of pure strategies $= 2^{\ell}$.

Example [Kuhn]: simplified poker game,

number of information sets = 13, number of pure strategies = 8192.

Exponential blowup of reduced strategic form

Example: Game with (1) **bounded** number of moves per node, (2) no **subgames** (otherwise simplify by solving subgames first).



This tree with n nodes: $\approx 2^{\sqrt{n}/2}$ strategies per player, reduced strategic form still (sub-)exponential in tree size.

Our result (sneak preview)

The **sequence form** is a strategic description of an extensive game with perfect recall that has the **same** size as the game tree, as opposed to **exponential** size of reduced strategic form.

The same known strategic-form algorithms for **finding equilibria** can be applied to the sequence form:

linear programming (LP) for two-player zero-sum games, linear complementarity (LCP) for general two-player games,

Game tree of size n:

sequence form size $n \times n$,

reduced strategic form: possibly size $2^{\sqrt{n}}$.

Size of reduced strategic form versus sequence form

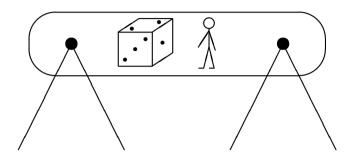
tree depth	tree size		mber of d strategies	Reduced Strategic Form size	indep varia		SF size
	(nodes)	player 1	player 2		pl. 1	pl. 2	
1	3	2	1	2	1		2
2	7		2	4		1	2
3	15	4		8	2		4
4	31		8	32		4	16
5	63	16		128	8		64
6	127		128	2048		16	256
7	255	256		32768	32		1024
8	511		32768	8388608		64	4096
9	1023	65536		2147483648	128		16384
10	2047		2147483648	140737488355328		256	65536

Large game trees (two-person poker) solved with the sequence form

POKER IS NOT A POPULAR GAME AMONG CAMELEONS nozzman.com

Use behavior strategies

Behavior strategy = **local** randomization



Mixed strategy too redundant, use behavior strategy instead:

- only one variable per **move**: player 1 chooses L with probability X_L player 1 chooses R with probability X_R . . . player 2 chooses R with probability R . . .
- expected payoff = $5 Y_a X_L + 10 Y_a X_R Y_p X_U + 15 Y_a X_R Y_p X_V + \cdots$
- problem: nonlinear!

Variable transformation

For each **sequence** σ of moves of player 1 introduce new variable x_{σ}

new variables replace products:

if
$$\sigma = PQRS$$
 then $x_{\sigma} = X_PX_QX_RX_S$

• Example:

$$egin{array}{ll} x_L &= X_L \ x_{RU} &= X_R X_U \ & \dots \ & y_a &= Y_a \ y_{ap} &= Y_a Y_p \ & \dots \end{array}$$

• expected payoff = $5 x_L y_a + 10 x_{RU} y_{ap} + 15 x_{RV} y_{ap} + \cdots$ is **linear** in variables of one player.

New paradigm: Sequences instead of pure strategies

Before:

pure strategy *i*

probability x_i

mixed strategy x

characterized by 1x = 1

expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$

After:

sequence σ

realization probability x_{σ}

realization plan x

characterized by Ex = e

expected payoff $x^{\top}Ay$

$$x_{0} = 1$$
 $x_{L} + x_{R} = x_{0}$
 $x_{RU} + x_{RV} = x_{R}$
 $x_{RU} + x$

Realization plans

Realization plan $x=(x_{\emptyset},x_L,x_R,x_C,x_D,x_{RU},x_{RV})$

(= vector of realization probabilities)

characterized by $x \geq 0$ and linear equalities

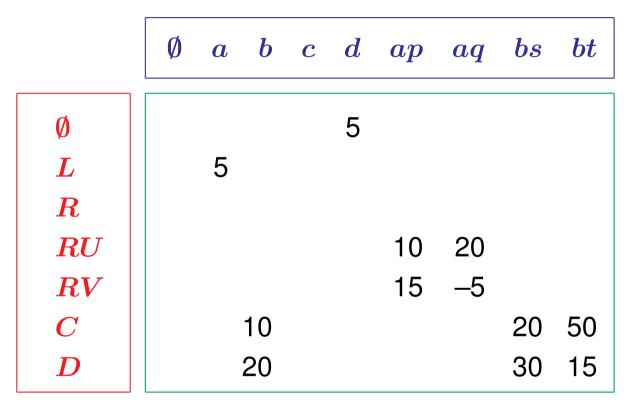
$$egin{aligned} x_\emptyset &= 1 \ x_\emptyset &= x_L + \, x_R \ x_\emptyset &= & x_C + x_D \ &x_R &= & x_{RU} + x_{RV} \end{aligned}$$

written as Ex = e with

$$E = egin{bmatrix} 1 & & & & & & \ -1 & 1 & 1 & & & & \ -1 & & 1 & 1 & & & \ & -1 & & & 1 & 1 \end{bmatrix}, \qquad e = egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

The sequence form

Payoff matrix **A**



expected payoff $\mathbf{z}^{\top} \mathbf{A} \mathbf{y}$,

rows played with $m{x}$ subject to $m{x} \geq 0, \quad m{E} \, m{x} = e,$ columns played with $m{y}$ subject to $m{y} \geq 0, \quad m{F} \, m{y} = f.$

How to play

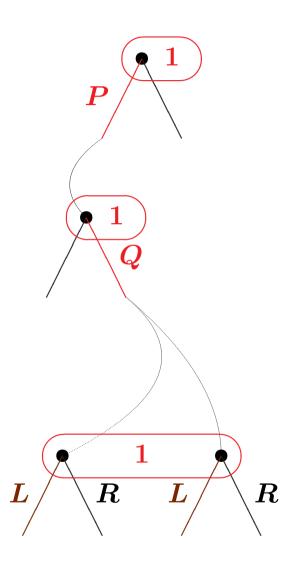
Given: realization plan x with Ex = e.

Move $m{L}$ is last move of **unique** sequence, say $m{PQL}$, where $m{x_{PQL}} + m{x_{PQR}} = m{x_{PQ}}$.

$$\Longrightarrow$$
 behavior-probability $(oldsymbol{L}) = rac{oldsymbol{x_{PQL}}}{oldsymbol{x_{PQ}}}$.

Required assumption of **perfect recall** [Kuhn 1953, Selten 1975]:

Each node in an information set is preceded by same sequence, here PQ, of the player's own earlier moves.



Best responses – LP duality

1) Best response x against fixed y solves LP:

$$\max_{oldsymbol{x}} \quad oldsymbol{x}^ op(Aoldsymbol{y})$$
 subject to $oldsymbol{E}oldsymbol{x} = e$ $oldsymbol{x} \geq 0$

2) Consider the dual of this LP:

$$\min_{oldsymbol{u}} \quad e^{ op} oldsymbol{u}$$
 subject to $oldsymbol{E}^{ op} oldsymbol{u} \geq Ay$

LP duality \implies same optimal value (payoff to player 1).

Best responses – LP duality

2) Consider the **dual** of this LP:

$$\min_{oldsymbol{u}} \quad e^{ op} oldsymbol{u} \ ext{subject to} \quad E^{ op} oldsymbol{u} \geq Ay$$

LP duality \implies same optimal value (payoff to player 1),

3) minimized by player 2 if zero-sum game, B=-A:

$$egin{array}{ll} \min & e^{ op} oldsymbol{u} \ \mathbf{u}, \, y \ \end{array}$$
 subject to $oldsymbol{E}^{ op} oldsymbol{u} \geq A y \ F y = f \ y \geq 0 \ \end{array}$

Example

1) Best response LP

$$egin{array}{ll} \max_{m{x}} & m{x}^ op(Ay) \ & ext{subject to} & Em{x} = e \ & m{x} \geq 0 \end{array}$$

$$egin{array}{c|cccc} oldsymbol{x_0} & oldsymbol{x_{I}} & 1 - 1 - 1 & 0 & 0 \ oldsymbol{x_{I}} & 1 & 2 & 2 \ oldsymbol{x_{C}} & 1 & 1 & 1 \ oldsymbol{x_{D}} & 1 & 0 & 1 \ \hline oldsymbol{1} & 0 & 0 & \max \end{array}$$

2) dual LP

$$\min_{oldsymbol{u}} \quad e^{ op} oldsymbol{u}$$
 subject to $E^{ op} oldsymbol{u} \geq A y$

$$egin{array}{c|c} u_0 & u_1 & u_2 \\ \hline 1-1-1 & & 0 \\ 1 & 1 & \geq 2 \\ & 1 & 1 \\ & 1 & 0 \\ \hline \end{array}$$

$$1 \quad 0 \quad 0 \rightarrow min$$

Example

2) dual LP

 $\boldsymbol{e}^{\top}\boldsymbol{u}$ min subject to $E^{ op} {f u} \geq A y$

3) Treat y as a variable:

 $\boldsymbol{e}^{\top}\boldsymbol{u}$ min $\boldsymbol{u},\,\boldsymbol{y}$ subject to $E^{ op} {f u} \geq A {f y}$ Fy = f $y \geq 0$

$$egin{array}{c|c} u_0 \ u_1 \ u_2 \ \hline 1-1-1 \ \end{array}$$

$$1 \quad 0 \quad 0 \rightarrow min$$

$$oldsymbol{u_0} oldsymbol{u_1} oldsymbol{u_2} \qquad oldsymbol{y_0} oldsymbol{y_a} oldsymbol{y_b} oldsymbol{y_c} \geq 0$$

$$1 \quad 0 \quad 0 \qquad \longrightarrow \min$$

Results

Input:

Two-person game tree with perfect recall.

Theorem:

A zero-sum game is solved via a Linear Program (LP) of linear size.

Theorem:

A non-zero-sum game is solved via a Linear Complementarity Problem (LCP) of **linear** size.

A sample equilibrium is found by Lemke's algorithm.

This algorithm mimicks the Harsanyi–Selten tracing procedure and finds a **normal form perfect** equilibrium.

LCP – Lemke's algorithm

Consider a **prior** $(\overline{x}, \overline{y})$, and a new variable z_0 in the system

$$egin{aligned} oldsymbol{Ex} & oldsymbol{+} oldsymbol{e} oldsymbol{z}_0 &= oldsymbol{e} \ oldsymbol{F} oldsymbol{v} & oldsymbol{+} oldsymbol{f} oldsymbol{z}_0 &= oldsymbol{e} oldsymbol{f} \ oldsymbol{r} & oldsymbol{E} oldsymbol{v} & oldsymbol{+} oldsymbol{f} oldsymbol{z}_0 &= oldsymbol{f} oldsymbol{e} \ oldsymbol{F} oldsymbol{v} & oldsymbol{-} oldsymbol{Ay} oldsymbol{z}_0 &= oldsymbol{e} oldsymbol{e} \ oldsymbol{f} \ oldsymbol{s} & oldsymbol{e} oldsymbol{f} oldsymbol{v} & oldsymbol{Ay} oldsymbol{z}_0 &= oldsymbol{f} oldsymbol{e} \ oldsymbol{f} \ oldsymbol{s} \ oldsymbol{z} & oldsymbol{e} oldsymbol{f} \ oldsymbol{z}_0 &= oldsymbol{f} oldsymbol{e} \ oldsymbol{f} \ oldsymbol{e} \ oldsymbol{e} \ oldsymbol{f} \ oldsymbol{e} \ oldsymbol{e} \ oldsymbol{f} \ oldsymbol{e} \ oldsymbol{e} \ oldsymbol{e} \ oldsymbol{f} \ oldsymbol{e} \$$

Equilibrium condition $\mathbf{z}^{\top}\mathbf{r} = 0$, $y^{\top}s = 0$, $[\mathbf{z}_0 = 0]$.

Initial solution $z_0 = 1$, x = 0, y = 0.

Complementary pivoting:

 $x_{\sigma} \leftrightarrow r_{\sigma}, \ y_{\tau} \leftrightarrow s_{\tau}, \ \text{until} \ z_0 \ \text{leaves the basis.}$

History of sequence form

- I. V. Romanovskii (1962), Reduction of a game with complete memory to a matrix game.
 Soviet Mathematics 3, 678-681 (Russian orig.: Doklady Akademii Nauk SSR 144, 62-64). [told to BvS by IR in 1996]
- R. Selten (1988), Evolutionary stability in extensive two-person games correction and further development. *Math. Social Sciences* **16**, 223-266. [told to BvS by RS in 1996]
- D. Koller and N. Megiddo (1992), The complexity of two-person zero-sum games in extensive form.
 Games and Economic Behavior 4, 528-552.

Related own work

- BvS (1996), Efficient computation of behavior strategies. *Games Econ. Behavior* **14**, 220-246.
- D. Koller, N. Megiddo, and BvS (1996),
 Efficient computation of equilibria for extensive two-person games. GEB 14, 247-259.
- BvS, A. van den Elzen, A. J. J. Talman (2002),
 Computing Normal-Form Perfect Equilibria for Extensive Two-Person Games.
 Econometrica 70, 693-715.
- F. Forges and BvS (2002), Computationally efficient coordination in game trees. LSE-CDAM-2002-02.
 [Extensive-form correlated equilibria for 2 players and no chance moves.]

Summary

- Sequence form: # of variables = game tree size.
- Algorithm = Lemke's complementary pvioting.
- Efficient normal form computation.
- Mimic tracing procedure for normal form.
- Computed equilibrium is normal form perfect if prior is completely mixed.
 Relative mistake probabilities are as in prior.
- Computing several equilibria possible, but no guarantee to find them all.