Where Strategic- and Evolutionary Stability Depart	Dagstuhl
A Study of Minimal Diversity Games	
by Dieter Balkenborg and Dries Vermeulen	November 2007

structure of talk:

- objective
- minimal diversity games and their Nash equilibrium components
- behavior of the replicator dynamics
- notions of strategic stability
- application to minimal diversity games
- consequences for evolutionary stability

Nash equilibrium: combination of strategies in a game where everybody optimizes given the behavior of the others

page 21 - page 24 of Nash' thesis: Motivation and Interpretation

- A) the "mass-action" interpretation
- B) the "rational prediction" interpretation

"The basic requirement for non-cooperative game is that there should be no pre-play communication among the players [unless it has no bearing on the game]."

Objective 2 December 2007

A) the "mass-action" interpretation

- "there is a population [in the sense of statistics] of participants for each position in the game"
- "stable "average play" "
- players have limited information, but enough to judge payoffs from each pure (non-randomizing) strategy
- select pure strategy maximizing (myopically) expected payoff
- ⇒ population play must be Nash equilibrium

Similar model to evolutionary game theory, but

- explicit reference to an adaptive dynamical process instead of stationarity assumption
- not necessarily myopic rationality, instead more successful strategies generate more offspring or are imitated more or a learned more quickly...
- (local) stability requirements
- \Rightarrow Nash equilibrium necessary, but not sufficient for a long-run stable outcome
- \Rightarrow here: asymptotically stable Nash equilibrium components

Objective 4 December 2007

B) the "rational prediction" interpretation

- Rationality and the game common knowledge of the players
- Prediction unique, can be determined by players
- ⇒ prediction must be a Nash equilibrium (because it cannot be a "self-destroying prophecy")
- again, Nash equilibrium necessary, not sufficient for Nash equilibrium

- ⇒ need to refine among Nash equilibria, "...sometimes good heuristic reasons can be found for narrowing down the set of equilibrium points..."
 - ⇒ Harsanyi / Selten theory of equilibrium selection or,

arguably most demanding refinement concept:

Kohlberg /Mertens' notion of strategically stable set of Nash equilibria

Objective 6 December 2007

Swinkels, Demichelis / Ritzberger: evolutionary stability + ? ⇒ strategic stability

- concrete examples where evolutionary and strategic stability select different components of Nash equilibria
- evolutionary stable components are not essential fixed point sets
- small perturbations yield examples where generically no trajectory converges

Normal Form Games 1 | December 2007

• players $i = 1, \dots, n$

• each player i has a finite set of pure strategies S_i

• his set of mixed strategies is

$$\Sigma_{i} = \left\{ \sigma_{i} : S_{i} \to \mathbf{R}^{\geq 0} | \sum_{s_{i} \in S_{i}} \sigma_{i} (s_{i}) = 1 \right\}$$

Normal Form Games 2

December 2007

• The preferences of the players are described by von Neumann / Morgenstern utility (or "payoff") functions

$$u_i: S = \times_{i=1,\dots,n} S_i \to \mathbf{R}$$

for each player i.

• The expected utility of a mixed strategy combinations is given by the multilinear function

$$u_i: \Sigma = \times_{i=1,\dots,n} \Sigma_i \to \mathbf{R}$$

defined by

$$u_i(\sigma_1, \dots, \sigma_n) = \sum_{(s_1, \dots, s_n) \in S} \left(\prod_{i=1}^n \sigma_i(s_i) \right) u_i(s_1, \dots, s_n)$$

Normal Form Games 3 | December 2007

interpretation:

• simultaneous move game

• simultaneous "planning ahead"; (pure) strategy: a plan what to do under all contingencies, as opposed to "crossing the bridge if one gets there"

Nash Equilibrium | December 2007

• For $\sigma = (\sigma_1, \dots, \sigma_n) \in \Sigma$ and $\tau_i \in \Sigma_i$, $1 \le i \le n$ $\sigma \setminus \tau_i := (\sigma_1, \dots, \sigma_{i-1}, \tau_i, \sigma_{i+1}, \dots, \sigma_n)$

• A Nash equilibrium is a mixed strategy combination $\sigma \in \Sigma$ such that

$$u_i\left(\sigma\backslash\tau_i\right)\leq u_i\left(\sigma\right)$$

for all $\tau_i \in \Sigma_i$, $1 \leq i \leq n$

Minimal Diversity Games 1 December 2007

A team coordination problem:

- $\bullet i = 1, \cdots, N \geq 2$ players must choose simultaneously and independently among
- $k=1,\cdots,K\geq 2$ pure strategies (same for all players)
- identical payoffs for all players:

$$u_i(k_1, \dots, k_N) = \begin{cases} -1 & \text{if } k_1 = k_2 = \dots = k_N \\ 0 & \text{else} \end{cases}$$

A minimum diversity game has the following Nash equilibrium components:

- \bullet {m} where m is the Nash equilibrium in mixed strategies where each player chooses all his strategies with equal probability 1/K. It is inefficient.
- the set G of efficient strategy combinations yielding expected payoff zero.
- exception N = K = 2: G consists of two isolated equilibria.

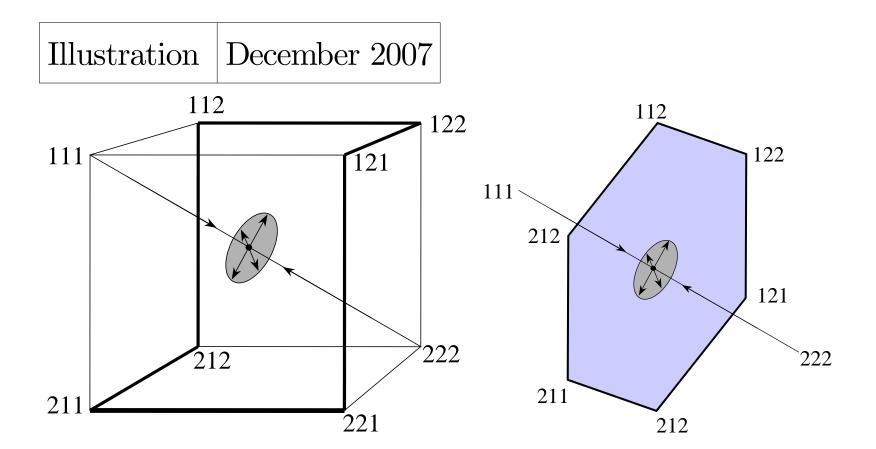
Topology of G | December 2007

Proposition:

G IS A TOPOLOGICAL SPHERE OF DIMENSION

$$(N-1)\times(K-1)-1$$

Idea: project the $N \times (K-1)$ -dimensional polyhedron Σ of all strategy combinations onto the affine subspace through \mathfrak{m} which is orthogonal to the K-1 vectors $(e_k, e_k, \cdots, e_k)-\mathfrak{m}$, whereby e_k is the unit vector corresponding to pure strategy $1 \le k \le K-1$. The image of Σ is a $(N-1) \times (K-1)$ -dimensional compact convex polyhedron. G can be shown to be projected one-to-one onto the boundary of this set. All other strategy combinations are mapped into the interior. The boundary of a compact convex set is always a topological sphere.



Dimensions December 2007

N K	2	3	4	5
2	0	1	2	3
3	1	3	5	7
4	2	5	8	11
5	3	7	11	15

Euler characteristic zero: two cycles, three 3-dim. spheres etc.

The Standard Replicator Dynamics (Taylor) December 2007

not the dynamic of Taylor + Jonker!! ODE on Σ :

$$\dot{\sigma}_i(s_i) = \sigma_i(s_i) \left[u_i(\sigma \backslash s_i) - u_i(\sigma) \right]$$
 for all $s_i \in S_i$, $i = 1, \dots, n$

- \bullet evolution of behavior in n populations
- strategies not played now will not be played in the future (interior of faces invariant)
- growth rate of use of strategy proportional to success of strategy

Notice: Every NE and any pure strategy combination is a rest point.

The Standard Replicator Dynamics 2 December 2007

For any game with identical interests (with identical payoff functions) the payoff is easily shown to increase along a trajectory and is constant only at a rest point.

$$\frac{du}{dt} = \sum_{i=1}^{n} \sum_{s_i \in S_i} \sigma_i(s_i) \left[u\left(\sigma \backslash s_i\right) - u\left(\sigma\right) \right]^2 \ge 0$$

Therefore any trajectory can only have rest points as ω -limits.

The rest points not in the equilibrium point G of a minimum diversity game are isolated and as follows: Let \mathfrak{K} be a set of $\kappa \geq 1$ strategies. Then $\mathfrak{m}_{\mathfrak{K}}$ is the mixed strategy combination where each player selects one of the strategies in \mathfrak{K} with probability $1/\kappa$.

The Standard Replicator Dynamics 3 December 2007

Proposition: $\mathfrak{m}_{\mathfrak{K}}$ is a hyperbolic rest point with only real Eigenvalues, at least one of them being positive.

Observation: all points in G are stable rest points.

Theorem: There is a subset $X \subseteq \Sigma$ of Lebesque measure 1 such that all trajectories starting in X converge to G. In particular, \mathfrak{m} is unstable.

In brief: Evolution selects G

(Compare Hofbauer/Swinkels) Consider a dynamic on \mathbb{R}^S that is twice differentiable and forward-invariant on Σ . Suppose

- $\frac{\partial u_i}{\partial t} > 0$ for all players i on all points which are not rest points,
- all Nash equilibria are rest points,
- all rest points are also rest points of the replicator dynamics,
- if a rest point is not hyperbolic, then it is also not hyperbolic for the RD.

Then **Proposition:** Almost all trajectories converge to G. In particular, m is unstable.

Various attempts to define the concept exist, search for the right concept guided by a list of criteria (which cannot always be satisfied by a single Nash equilibrium)

A strategically stable set of Nash equilibria should exist and e.g. be

- compatible with the iterated elimination of weakly dominated strategies
- compatible with the never-weakly-best-reply criterion
- compatible with the "small world axiom" (outsider / insider)
- invariant with respect to the duplication of strategies

Strategic Stability 2 December 2007

A set of Nash equilibria G is

- essential, if it is minimal with respect to the property that there is a NE close by in every nearby game.
- hyperstable, if it is minimal with respect to the property that there is a NE close by in every game nearby an equivalent game.
- KM-strategically stable, if it is minimal with respect to the property that there is a NE close by in every nearby trembling-hand perturbed game.

Strategic Stability 3 December 2007

For $0 < \delta < 1$ let

$$P_{\delta} = \{ \bar{\eta}\sigma | 0 \leq \bar{\eta} \leq \delta, \sigma \in \Sigma \}$$
$$\partial P_{\delta} \text{ relative boundary}$$
$$P_{\delta}^{i} \text{ relative interior}$$

For $\eta = \bar{\eta}\tau \in P_1$ the (trembling-hand) perturbed game $\Gamma(\eta)$ has the same strategy space Σ and utility functions

$$u_i^{\eta}(\sigma) = u_i((1 - \bar{\eta})\sigma + \eta) = u_i((1 - \bar{\eta})\sigma + \bar{\eta}\tau)$$

(Notice that $\bar{\eta} = \sum_{s_i \in S_i} \eta_i(s_i)$ for all $1 \leq i \leq n$ and $\tau = \eta/\bar{\eta}$. Thus P_1 parametrizes the space of all trembling-hand perturbations with equal trembling prob. for all players.)

Strategic Stability 4 December 2007

For closed semialgebraic subsets S^i of

$$\left\{ (\eta, \sigma) \in P_1^i \times \Sigma | \sigma \text{ Nash eq. of } \Gamma(\eta) \right\}$$

denote by S their closure in $P_1 \times \Sigma$, and let S_{δ}^i , S_{δ} , ∂S_{δ} denote the inverse images in S of P_{δ}^i , P_{δ} , ∂P_{δ} , respectively, under the projection proj : $S \to P_1$.

(Mertens 1989) The stable sets are the Hausdorff limits of the sets S_0 , where S^i is such that, for all sufficiently small δ , S^i_{δ} is connected and the projection from $(S_{\delta}, \delta S_{\delta})$ to $(P_{\delta}, \partial P_{\delta})$ is homologically non-trivial.

Proposition: m is strategically stable under any of these definitions.

THEOREM (DeMichelis, Ritzberger, extensions by DeMichelis, Sorin) An asymptotically stable component of Nash equilibria for a dynamic similar to above which has non-zero Euler characteristic contains a Mertens-stable set.

THEOREM (Govindam, Wilson) A Nash equilibrium component is hyperstable iff its index is non-zero.

Since component G for minimum diversity games asymptotically stable, Euler-characteristic = index.

Therefore: If $\dim(G)$ even, G is hyperstable and Mertensstable. If $\dim(G)$ odd, G is not hyperstable. But is it Mertensstable or essential?

Strategic Stability 6 December 2007

Proposition: For N = 3 and K = 2 and for N = 2 and K odd G does not contain a Mertens strategically stable set and is not essential.

Here strategic and evolutionary stability depart!

Proof December 2007

Method: Consider the following perturbed games where the trembles correlate with the strategy choices: To each pure strategy combination s select a nearby mixed strategy combination s^{ε} and consider the game

$$u_i^{\varepsilon}(s) = u_i(s^{\varepsilon} \backslash s_i)$$

If arbitrarily small perturbations exist with no Nash equilibria near to G, then G is not essential, but also, using results by Hillas, $Jansen\ and\ Vermeulen$, not Hillas- or Mertens stable.

Construction | December 2007

Set

$$s_i^{k,\varepsilon} = \sum_{l=1}^K \frac{\varepsilon^{(l-k) \bmod K}}{\sum_{l=0}^{K-1} \varepsilon^k} s_i^l$$

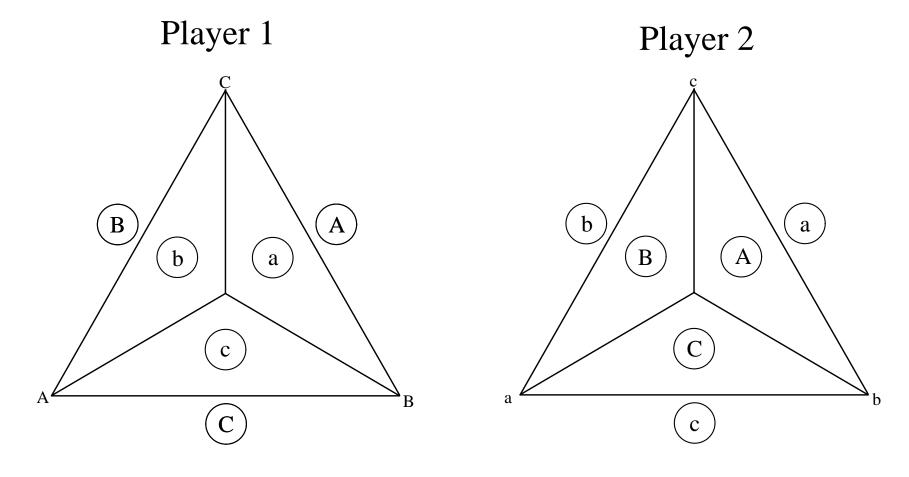
Then:

$$u_{1}^{\varepsilon}(l,k) = u_{2}^{\varepsilon}(k,l) = -\frac{\varepsilon^{(l-k) \operatorname{mod} K}}{\sum_{l=0}^{K-1} \varepsilon^{k}}$$

Lemma: If, in an equilibrium $\neq \mathfrak{m}$ where player 2 uses strategy k with minimal probability, player 1 is not going to use k-1 $1 \operatorname{mod}^+ K$.

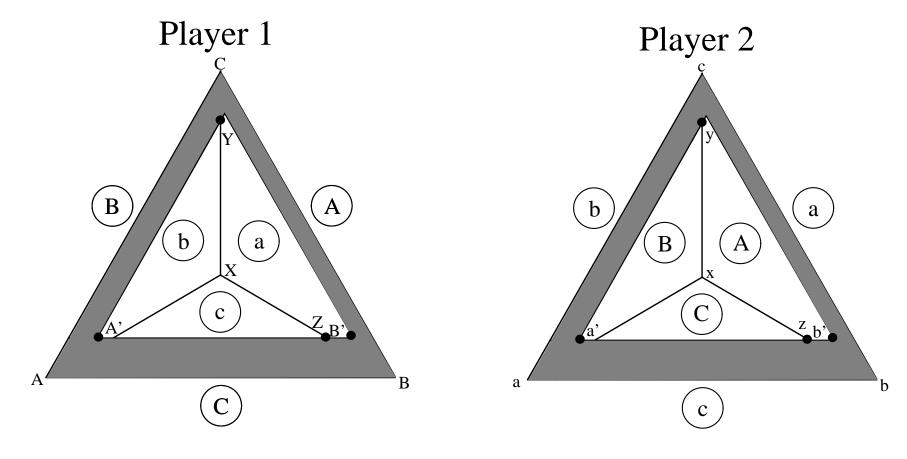
Illustrations 1 December 2007

N=2: Generalized paper-scissor stone construction.



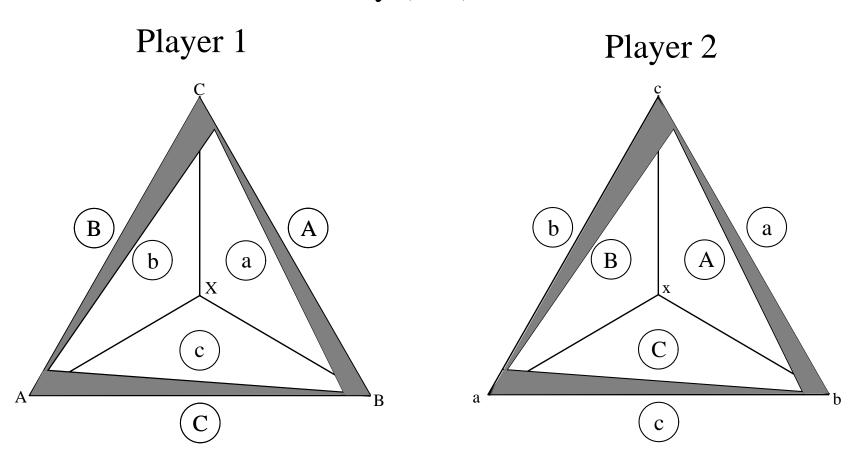
Illustrations 2 December 2007

NE: (A',b'), (B',a'), (Y,z), (Z,y), (Z,z)

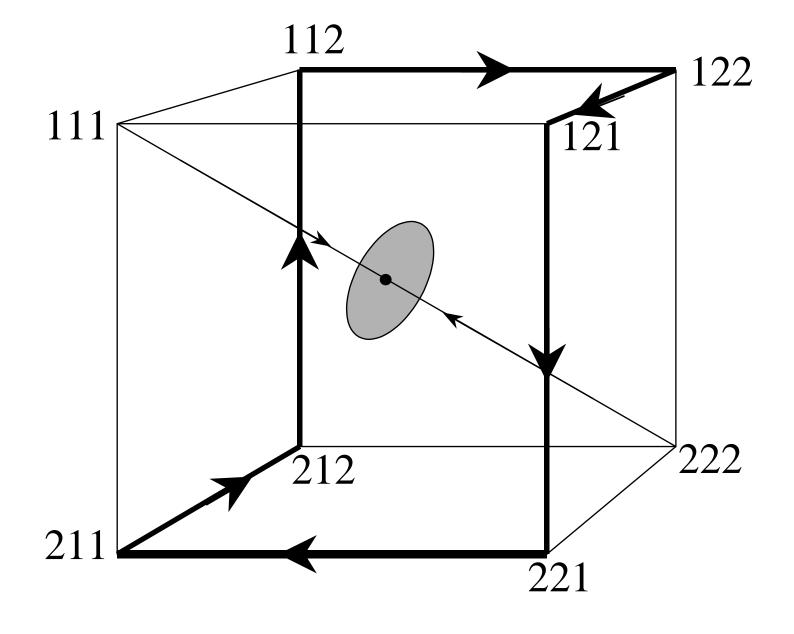


Illustrations 3 December 2007

Only (X,x) NE



Illustrations 4 December 2007



Evolution, cont. December 2007

Consider dynamic as above which continuously depends on the payoffs. Then in the nearby perturbed games:

 $\mathfrak m$ dynamically unstable, generically all trajectories converge to G and hence never to Nash equilibria.

 $N=3,\,K=2$: Jordan, Hofbauer Swinkels

N=2, K=3: Shapley

continuous fictituous play: Gaunersdorfer / Hofbauer.

Warning: m asymptotically stable for a suitable myopic learning dynamic in the perturbed games (Hofbauer).

Open Questions December 2007

Do the above examples have cycles as minimal attractors?

What about other minimal diversity games, in particular N = K = 3?

game with unique mixed eq.: paper-scissor-stone against both opponents, sum payoffs

What about strict equilibrium sets?