CUT-GENERATING FUNCTIONS

or The Infinite Relaxation

Gérard Cornuéjols

Tepper School of Business Carnegie Mellon University, Pittsburgh

January 2016

Mixed Integer Linear Programming

min
$$cx$$

s.t. $Ax = b$
 $x_j \in \mathbb{Z}$ for $j = 1, ..., p$
 $x_j \ge 0$ for $j = 1, ..., n$.

Cutting plane approach to solving MILP:

First solve the LP relaxation. Basic optimal solution:

$$x_i = f_i + \sum_{j \in N} r^j x_j$$
 for $i \in B$.

• If $f_i \notin \mathbb{Z}$ for some $i \in B \cap \{1, \dots, p\}$, add cutting planes.

Setting the Stage for Cutting Plane Formulas

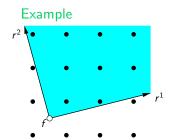
Gomory 1969: Relax nonnegativity on the basic variables.

In addition, Andersen, Louveaux, Weismantel and Wolsey 2007 suggested to relax integrality on the nonbasic variables x_i .

$$y = f + \sum_{j=1}^{k} r^{j} x_{j}$$

$$y \in \mathbb{Z}^{q}$$

$$x \geq 0$$



Feasible set
$$\left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{Z}^2 : \right.$$

$$\left(\begin{matrix} y_1 \\ y_2 \end{matrix} \right) = f + r^1 x_1 + r^2 x_2$$
 where $x_1 > 0, x_2 > 0 \}$

$$y = f + \sum_{j=1}^{k} r^{j} x_{j}$$

$$y \in \mathbb{Z}^{q}$$

$$x \geq 0$$

Every inequality cutting off the point $(\bar{x}, \bar{y}) = (0, f)$ is of the form $\sum_{i=1}^k \alpha_i x_i \ge 1.$

We are interested in "formulas" for deriving such inequalities. More formally, we are interested in functions $\psi: \mathbb{R}^q \to \mathbb{R}$ such that the inequality

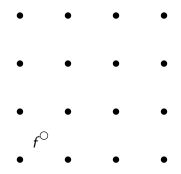
$$\sum_{j=1}^k \psi(r^j) x_j \ge 1$$

is valid for every choice of k and vectors $r^1, \ldots, r^k \in \mathbb{R}^q$.

We refer to such functions ψ as cut-generating functions.

We are interested in minimal cut-generating functions.

Cut-Generating Functions



We are given $f \notin \mathbb{Z}^q$. Can we generate cut-generating functions from this information?

These functions should generate valid cuts for any integer program with q basic integer variables: We know that any feasible solution to the integer program must satisfy y integral, and we want to cut off the point y = f since $f \notin \mathbb{Z}^q$.

Let $f \in \mathbb{R}^q \setminus \mathbb{Z}^q$.

If $\psi: \mathbb{R}^q \to \mathbb{R}$ is a minimal cut-generating function, then ψ is

- nonnegative
- piecewise linear
- positively homogeneous
- and convex.

Furthermore $K_{\psi} := \{ y \in \mathbb{R}^q : \psi(y - f) \leq 1 \}$ is a maximal \mathbb{Z}^q -free convex set containing f in its interior.

Conversely, for any maximal \mathbb{Z}^q -free convex set K containing f in its interior, the gauge of K-f is a minimal cut-generating function.

DEFINITION

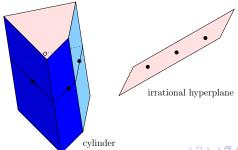
Gauge of a convex set S containing the origin: $\gamma_S(r) := \inf\{t > 0 : \frac{r}{t} \in S\}, \text{ for all } r \in \mathbb{R}^n.$

THEOREM A set $K \subset \mathbb{R}^q$ is a maximal \mathbb{Z}^q -free convex set if and only if

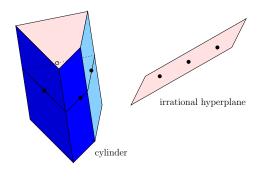
• either K is a polyhedron of the form K = P + L where P is a polytope, L is a rational linear space, $\dim(P) + \dim(L) = p$,

K does not contain any point of \mathbb{Z}^q in its interior and there is a point of \mathbb{Z}^q in the relative interior of each facet of K.

• or *K* is an irrational hyperplane.



Consequence of the Lovász and Borozan-Cornuéjols Theorems



If
$$K = \{ y \in \mathbb{R}^q : a_i(y - f) \le 1, i = 1, \dots, t \},$$

then the gauge of K - f is $\psi(r) = \max_{i=1,...,t} a_i r$.

Every minimal cut-generating function is of this form.

$$y = f + \sum_{j=1}^{k} r^{j} x_{j}$$

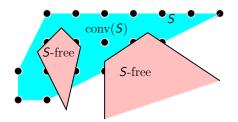
$$y \in S$$

$$x \geq 0$$

where $S = P \cap \mathbb{Z}^q$ and P is a rational polyhedron.

QUESTIONS: Can one define cut-generating functions?

What about maximal *S*-free sets?

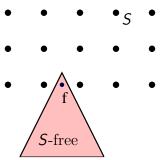


If
$$K = \{y \in \mathbb{R}^q : a_i(y - f) \le 1, i = 1, ..., t\}$$
, let $\psi_K(r) = \max_{i=1,...,t} a_i r$.

THEOREM Basu, Conforti, Cornuéjols, Zambelli SIDMA 2010

For every cut-generating function ψ , there exists a maximal *S*-free convex set K with f in its interior such that $\psi_K \leq \psi$.

Conversely, if K is a maximal S-free convex set K with f in its interior, then ψ_K is a minimal cut-generating function.

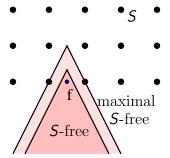


If
$$K = \{ y \in \mathbb{R}^q : a_i(y - f) \le 1, i = 1, ..., t \}$$
, let $\psi_K(r) = \max_{i=1,...,t} a_i r$.

THEOREM Basu, Conforti, Cornuéjols, Zambelli SIDMA 2010

For every cut-generating function ψ , there exists a maximal *S*-free convex set K with f in its interior such that $\psi_K \leq \psi$.

Conversely, if K is a maximal S-free convex set K with f in its interior, then ψ_K is a minimal cut-generating function.



If
$$K = \{ y \in \mathbb{R}^q : a_i(y - f) \le 1, i = 1, ..., t \}$$
, let $\psi_K(r) = \max_{i=1,...,t} a_i r$.

THEOREM Basu, Conforti, Cornuéjols, Zambelli SIDMA 2010

For every cut-generating function ψ , there exists a maximal S-free convex set K with f in its interior such that $\psi_K \leq \psi$. Conversely, if K is a maximal S-free convex set K with f in its

interior, then ψ_{K} is a minimal cut-generating function.

 $\begin{array}{c} S \\ \text{maximal } S\text{-free} \\ \end{array}$

Integer Lifting

Integer Lifting

We now consider a system of the form

$$x = f + \sum_{j=1}^{k} r^{j} s_{j} + \sum_{i=1}^{\ell} \rho^{i} y_{i}$$

$$x \in S := P \cap \mathbb{Z}^{q}$$

$$s \geq 0$$

$$y \geq 0, \quad y \in \mathbb{Z}^{\ell}.$$

We are interested in pairs of functions $\psi: \mathbb{R}^q \to \mathbb{R}$ and $\pi: \mathbb{R}^q \to \mathbb{R}$ such that the inequality

$$\sum_{j=1}^k \psi(r^j) s_j + \sum_{i=1}^\ell \pi(\rho^i) y_i \ge 1$$

is valid for every choice of integers k, ℓ and vectors $r^1, \ldots, r^k \in \mathbb{R}^q$ and $\rho^1, \ldots, \rho^\ell \in \mathbb{R}^q$.

Gomory and Johnson since the 1970's: Construct π first, then ψ . We turn things around! We start from ψ .

DEFINITION The function π is called a lifting of ψ .

REMARK If ψ is a cut-generating function and π is a minimal lifting of ψ , then $\pi \leq \psi$.

An Equivalent Formulation

The following formulation is equivalent for all $h: \mathbb{R}^q \longrightarrow \mathbb{Z}$.

$$x = f + \sum_{j=1}^{k} r^{j} s_{j} + \sum_{i=1}^{\ell} \rho^{i} y_{i}$$

$$z = 0 + \sum_{j=1}^{k} 0 s_{j} + \sum_{i=1}^{\ell} h(\rho^{i}) y_{i}$$

$$z \in \mathbb{Z}$$

$$x \in S$$

$$s \geq 0$$

$$y \geq 0, y \in \mathbb{Z}^{\ell}.$$

A Relaxation: Now we relax the integrality of the y variables.

This is a problem of the form that we understand: minimal inequalities correspond to maximal lattice-free convex sets.

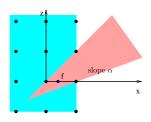
We have increased the dimension by 1.

Let
$$\psi(r^j) := \tilde{\psi}(\binom{r^j}{0})$$
 and $\pi^h(\rho^i) := \tilde{\psi}(\binom{\rho^i}{h(\rho^i)})$

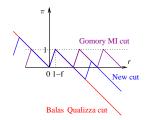
$$\sum_{j=1}^k \psi(r^j) s_j + \sum_{i=1}^\ell \pi^h(\rho^i) y_i \ge 1$$

Consider a single basic row, with integer basic variable x < 1, and both continuous and integer nonbasic variables.

Introduce a new basic variable $z \in \mathbb{Z}$.



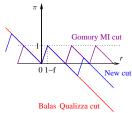
This yields a new cut that is identical to the Gomory mixed integer cut on the continuous variables but different on the integer variables: $\pi_{\alpha}(r) = \min\{\frac{-r + \lceil \alpha r \rceil}{f}, \frac{r}{1-f} - \frac{\lfloor \alpha r \rfloor (1 - \alpha (1-f))}{\alpha f (1-f)}\}.$



QUESTION Starting from a minimal cut-generating function $\psi : \mathbb{R}^q \to \mathbb{R}$, what can we say about a minimal lifting function π ?

We already observed that $\pi \leq \psi$. Can we guarantee that $\pi(r) = \psi(r)$ for some vectors r?

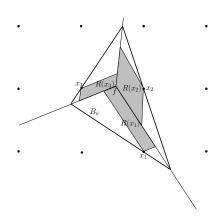
THEOREM Let ψ be a minimal cut-generating function and π a minimal lifting of ψ . Then there exists $\epsilon>0$ such that ψ and π coincide on a ball of radius ϵ centered at the origin.



Let R be the region where π and ψ coincide.

What can be said about this region R?

THEOREM Let ψ be a minimal cgf and let π be a minimal lifting of ψ . Then $\pi(r) = \psi(r)$ for $r \in R := \bigcup_t R(x_t)$ where the union is taken over all points $x_t \in S$ on the boundary of the maximal S-free convex set K_{ψ} defining ψ and the $R(x_t)$ s are parallelepipeds as shown in grey in the figure. Conversely, if $r \notin R$, there exists a minimal lifting π where $\pi(r) < \psi(r)$.



THEOREM Let ψ be a minimal cgf. Assume $S = \mathbb{Z}^n$. Then ψ has a unique minimal lifting π if and only if $R + \mathbb{Z}^q$ covers \mathbb{R}^q .

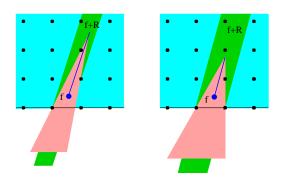
OPEN PROBLEM Does this result hold for general $S := P \cap \mathbb{Z}^n$?

Sufficiency:

THEOREM Consider a minimal cut-generating function ψ .

Let L be the lineality space of conv(S).

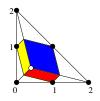
If $R + (\mathbb{Z}^q \cap L)$ covers \mathbb{R}^q , then ψ has a unique minimal lifting π .

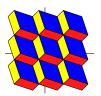


THEOREM In the plane, the splits, Type 1 and Type 2 triangles have a unique lifting. The Type 3 triangles and most quadrilaterals do not.

Example: The region f + R

and its integer translates.

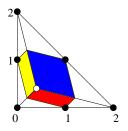


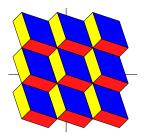


THEOREM Averkov and Basil IPCO 2014

Let K be a maximal \mathbb{Z}^q -free polytope $(q \geq 2)$. Then K is either a body with a unique lifting for all $f \in int(K)$, or a body with multiple liftings for all $f \in int(K)$.

THEOREM Let K be a maximal \mathbb{Z}^q -free simplex such that each facet of K has exactly one integer point in its relative interior. Then K is a body with a unique lifting if and only if all the vertices of K are integral, i.e., K is a unimodular transformation of $\operatorname{conv}\{0, qe^1, \ldots, qe^q\}$.

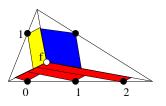




THEOREM

Let K be a maximal \mathbb{Z}^q -free 2-partitionable simplex with hyperplanes H_1 , H_2 such that H_1 defines a facet of K and this is the only facet of K with more than one lattice point in its relative interior.

Then K is a body with a unique lifting if and only if $K \cap H_2$ is an affine unimodular transformation of $\operatorname{conv}\{0, (q-1)e^1, \dots, (q-1)e^{q-1}\}.$



Minimal cut-generating functions for the pure integer case

$$f + \sum_{i=1}^k r_j s_j \in \mathbb{Z}^m, \quad s_j \in \mathbb{Z}_+ \ \text{ for } j = 1, \dots, k.$$
 (PurelP)

A function $\pi: \mathbb{R}^m \to \mathbb{R}$ is periodic if $\pi(r) = \pi(r+w)$ for all $r \in [0,1]^m$ and $w \in \mathbb{Z}^m$.

Also, π is said to satisfy the symmetry condition if $\pi(r) + \pi(-f - r) = 1$ for all $r \in \mathbb{R}^m$.

Finally,
$$\pi$$
 is subadditive if $\pi(a+b) < \pi(a) + \pi(b)$.

THEOREM (Gomory and Johnson 1972) Let $\pi: \mathbb{R}^m \to \mathbb{R}$ be a non-negative function. Then π is a minimal cut-generating function for (PurelP) if and only if $\pi(0) = 0$, π is periodic, subadditive and satisfies the symmetry condition.

Extreme cut-generating functions

A cut-generating function π is extreme if it cannot be written as a convex combination of two other cut-generating functions.

Basu, Hildebrand and Köppe address the issue of checking the extremality of a cut generating function.

A deep result on the infinite relaxation is a sufficient condition for extremality in the restricted setting m=1, the so-called 2-slope theorem of Gomory and Johnson 1972.

THEOREM (2-slope theorem)

Let $\pi:\mathbb{R}\to\mathbb{R}$ be a minimal cut-generating function. If π is a continuous piecewise linear function with only two slopes, then π is extreme.

Gomory and Johnson 2003 conjectured that continuous extreme cut-generating functions are always piecewise linear. Basu, Conforti, Cornuéjols and Zambelli MP 2012 disproved this conjecture.

Exercises

In "Courses Material" on the webpage http://eventos.cmm.uchile.cl/discretas2016/ do the following exercises in Course Notes "Cutting planes in integer programming"

Exercise 4.3

Exercise 4.7

Optional: Exercise 4.8