Algorithmic Game Theory Learning in games

Eva Tardos, Cornell Valparaiso Summer School

Outline

- Yesterday: games, Price of anarchy, smoothness based proof in congestion games
- Today: learning as a behavior in games (instead of finding Nash)
- Next: Auctions as games, including handling uncertainty

Recall: Games of minimizing cost

- Finite set of players 1,...,n
- strategy sets S_i for player i:
- Resulting in strategy vector: $\mathbf{s} = (s_1, \dots, s_n)$ for each $s_i \in S_i$
- Cost of player i: $c_i(s)$ or $c_i(s_i,s_{-i})$ Pure Nash equilibrium if $c_i(s) \leq c_i(s_i',s_{-i})$ for all players and all alternate strategies $s'_i \in S_i$

Yesterday: smoothness proof for PoA

Game is(λ,μ)-smooth if for some μ <1 and λ >0 and all s and a welfare optimal s* we have

$$\sum_i c_i(s_i^*,s_{-i}) \leq \lambda c(s^*) + \mu \; c(s)$$

Theorem: Price of anarchy for any (λ,μ)-smooth game is at most $\lambda/(1-\mu)$

Examples of "smoothness bounds"

 Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-smooth (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias'05)
 ⇒ 2.5 price of anarchy

Non-atomic (very small) players:

- Monotone increasing congestion costs (1,1) smooth
 - ⇒ Nash cost ≤ opt of double traffic rate (Roughgarden-T'02)
- affine congestion cost are (1, ¼) smooth (Roughgarden-T'02) ⇒ 4/3 price of anarchy

Resulting bounds are often tight

What is Selfish Outcome?

Classical: Nash equilibrium

Current strategy "best response" for all players (no incentive to deviate)

Theorem [Nash 1952]:

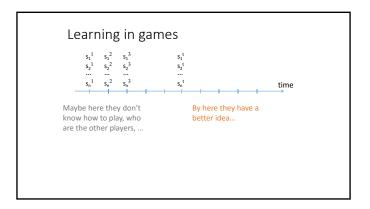
Always exists if we allow randomized strategies

Price of Anarchy:

cost of worst (pure) Nash "socially optimum" cost

Troubles:

- How do players know which Nash to coordinate on?
- Finding a Nash equilibrium is computationally hard (PPAD)

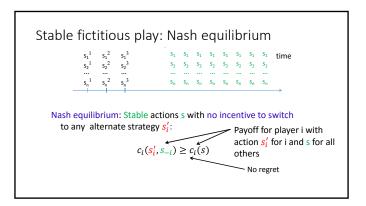


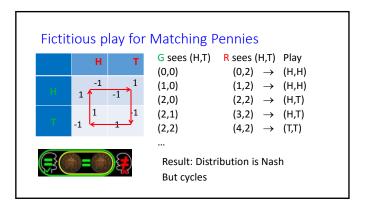
Outcome of Learning in Repeated Game

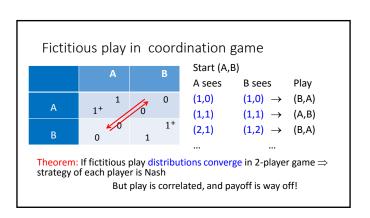
- What is learning?
- Does learning lead to finding Nash equilibrium?

Robinson'51:

• fictitious play = best respond to past history of other players Goal: "pre-play" as a way to learn to play Nash.







Outcome of Fictitious Play in Repeated Game

• Does learning lead to finding Nash equilibrium? mostly not

Theorem: Marginal distribution of each player actions

converges to Nash in

Robinson'51: In generic payoff 2 by 2 games Miyasawa'61: In two person 0-sum games

Learning in Repeated Game 2

Smoothed fictitious play: randomize between similar payoffs.

- fictitious play = best respond to past history of other player $argmin_x \sum c_i(x, s_{-i}^t)$
- Smoothed fictitious play: play prob. distribution $\sigma(x)$ $argmix_{\sigma} \sum_{t} E_{x \sim \sigma}(c_{i}(x, s_{-i}^{t})) - \nu H(\sigma)$ where $\nu > 0$ and $H(\sigma) = -\sum_{x} \sigma(x) \log \sigma(x)$

Learning in Repeated Game 2'

Reinforcement learning = reinforce actions that worked well in the past sequence of play $s^1, s^2, ..., s^t$

Focus on player i:

Randomized strategy: weight/value of action x: w_x

probability of playing action x is $p_x = w_x / \sum_{a_i} w_{a_i}$ Update $w_x \leftarrow w_x \alpha^{c_i(x,a^t_{-i})}$ for some $\alpha < 1$

Multiplicative weight update (MWU) or Hedge [Freund and Schapire'97]

No-regret without stability: learning

Theorem 1

• Smoothed fictitious play with entropy = Multiplicative weight update (with $\alpha = e^{-1/\nu}$)

Smoothed Fictitious Play:

$$argmix_{\sigma} \sum_{t}^{\prime} E_{x \sim \sigma}(c_{i}(x, s_{-i}^{t})) - v H(\sigma)$$

Multiplicative weight:

probability of playing action x is $p_x=w_x/\sum_{s_i} w_{s_i}$ Update $w_x \leftarrow w_x \alpha^{c_i(x,s_{-i}^t)}$

Proof:

No-regret without stability: learning

Theorem 2

- Smoothed fictitious play with entropy = Multiplicative weight update (with $\alpha = e^{1/\nu}$)
- Guarantees small regret ($\sqrt[n]{T}$ over time T)

Regret for a fixed action x:

 $\sum_t c_i(s^t) \leq \sum_t c_i(\boldsymbol{x}, s^t_{-i}) + \mathrm{R}_\mathrm{i}(\boldsymbol{x}, \mathsf{T})$

Many simple rules ensure $R_i(x, T)$ approx. $\sim \sqrt{T}$ for all x

Multiplicative Weight Regret bound

Theorem: Multiplicative weight with $\alpha=1-\epsilon$ achieves for a player

$$\sum_{i=1}^{l} c_i(s^t) \le \frac{1}{1-\epsilon} \sum_{i=1}^{l} c_i(\mathbf{x}, s_{-i}^t) + \frac{1}{\epsilon} \ln \mathbf{x}$$

with n startegies:
$$\sum_t c_i(s^t) \leq \frac{1}{1-\epsilon} \sum_t c_i(\mathbf{x}, s_{-i}^t) + \frac{1}{\epsilon} \ln n$$
 if costs $o \leq c_i(s^t) \leq 1$ for all strategies, then we get
$$\sum_t c_i(s^t) \leq \sum_t c_i(\mathbf{x}, s_{-i}^t) + O(\epsilon T) + \frac{1}{\epsilon} \ln n$$

Now choose $\frac{1}{\epsilon} = \sqrt{T/\ln n}$ to balance the two error terms, and get regret $O(\sqrt{T \ln n})$

Outcome with no-regret learning

Limit distribution σ of play (strategy vectors $s=(s_1, s_2, ..., s_n)$)

• all players i have no regret for all strategies x

$$E_{s \sim \sigma} \big(c_{\boldsymbol{i}}(s) \big) \leq E_{a \sim \sigma} (c_{\boldsymbol{i}}(\boldsymbol{x}, s_{-\boldsymbol{i}}))$$

Hart & Mas-Colell: Long term average play is (coarse) correlated equilibrium

Players update independently, but correlate on shared history

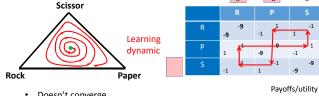
Correlated equilibrium vs Nash equilibrium

- ullet Correlated equilibrium where σ is a produc distribution (players choose independently) is a Nash
- • No-regret learning \rightarrow coarse correlated equilibrium exists. No need for the fixed point proof of Nash...

Simple example 3: rock-paper-scissor

	R	Р	S
R	0	-1	-1 1
Р	-1 1	0	-1
S	1 -1	-1 1	0

Nash equilibrium unique mixed: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ each



Dynamics of rock-paper-scissor (Shapley)

Nash:

- Doesn't converge
- correlates on shared history

Outcome of no-regret learning = (Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such that for all players

expected payoff ≥ exp. payoff of any fixed strategy

Coarse correlated eq. & players independent = Nash

Theorem [Freund and Schapire'99, Miyasawa'61] In two-person 0-sum games play converges to Nash value, and

Nash strategy for all players

Two person 0-sum games and no-regret learning

- \bullet p_{xy} probability distribution.
- Payoff matrix A, then payoff $\sum_{xy} p_{xy} A_{xy}$
- Value $\mathbf{v} = \sum_{xy} p_{xy} A_{xy}$ same as Nash
- Marginal distributions $\mathbf{q_x} = \sum_{y} p_{xy}$ and $\mathbf{r_y} = \sum_{x} p_{xy}$ for a Nash

But $p_{xy} \neq q_x r_y$

No-regret learning as a behavioral model?

• Er'ev and Roth'96

lab experiments with 2 person coordination game

• Fudenberg-Peysakhovich EC'14

lab experiments with seller-buyer game recency biased learning

• Nekipelov-Syrgkanis-Tardos EC'15

Bidding data on bing-Ad-Auctions

Recall smooth games

s is Nash, s* optimum

 $\textstyle \sum_i c_i(s_i^*,s_{-i}) \leq \lambda c(s^*) + \mu \; c(s)$ (λ,μ) -smooth

Usually true for all s, and then use for learning outcomes:

 $s^1, s^2, \dots, s^t, \dots$ sequence where all players have no-regret

We have: $\frac{1}{T} \sum_t c_i(s^t) \leq \frac{1}{T} \sum_t c_i(s_i^*, s_{-i}^t)$ Sum over all players and use smoothness:

Theorem: Average cost of no-regret learning outcome for any (λ,μ) -smooth game is at most $\lambda/(1-\mu)$ times the minimum.

Homework problem

- Hoteling game: graph with
 - Feach node v has a population size n_v with total population size $N=\sum_v n_v$ > Each edge e has a distance d_e
- Game: each of k players selects a node to locate its stand Payoffs: each population member selects the closest stand. Payoff is the size of the
 population selecting the stand. If there are multiple closest stands, the population
 splits evenly.
- Example:

two players, 1/5 payoff each

- Prove:
 - >At any Nash equilibrium, all players have payoff at least $\frac{N}{2(k-1)}$

 - \succ Same also true at no-regret outcomes. \succ What can you say if players have small regret. In T iterations at most ϵT
 - ➤ Is a Pure Nash equilibrium guaranteed to exists?