Algorithmic Game Theory

Auction Games, II

Eva Tardos, Cornell Valparaiso Summer School

Recall:

- Finite set of players 1,...,n
- strategy sets S_i for player i: bid on some items not a finite set
- Resulting in strategy vector: $\mathbf{s} = (s_1, ..., s_n)$ for each $s_i \in S_i$
- Utility player i: $u_i(s)$ or $u_i(s_i, s_{-i})$

 - We assume quasi-linear utility, and no externalities: If player wins set if items A_i and pays p_i her value is $v_i(A_i) p_i$
- Pure Nash equilibrium if $u_i(s) \ge u_i(s'_i, s_{-i})$ for all players and all alternate strategies $s'_i \in S_i$

Robust Analysis: first price auction

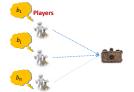
No regret:
$$u_i(b) \ge u_i\left(\frac{1}{2}v_i,b_{-i}\right) \ge \frac{1}{2}v_i - p$$
 either i wins or price above $p \ge \frac{1}{2}v_i$

- Apply this to the top value
- + winner doesn't regret paying
- \Rightarrow winner has value $\geq \frac{1}{2} \max_{i} v_i$

No need to bid $\frac{1}{2}v_i$... Just don't regret this!

Bayes Nash analysis

Strategy: bid as a function of value $b_i(v)$ Nash: $E_{v_{-i}b}[u_i(b(v))|v_i] \ge E_{v_{-i}b_{-i}}[u_i(b'_i, b_{-i}(v_{-i}))|v_i]$



Same bound on price of anarchy, same prof (take expectation)

Smoothness for auctions

Auction game is (λ,μ) -smooth if for some $\mu>1$, $\lambda>0$ and some strategy s* and

$$\sum_{i} u_{i}(s_{i}^{*}, s_{-i}) \geq \lambda opt - \mu R(s)$$

R(s) = revenue at bid vector s (usually μ =1)

Theorem: [Syrgkanis-T'13] Price of anarchy for any (λ,μ) -auction game is at most μ / λ

Social welfare: $\sum_i u_i(s) + R(s)$

Smoothness for auctions

for some $\mu>1$, $\lambda>0$ and some strategy s* and all s we have

$$\sum_{i} u_i(s_i^*, s_{-i}) \ge \lambda opt - \mu R(s)$$

R(s) = revenue at bid vector s (usually μ =1)

Price of Anarchy: full information.

$$\sum_{i} u_{i}(s) + R(s) \ge \sum_{i} u_{i}(s_{i}^{*}, s_{-i}) + R(s) \ge \lambda Opt - \mu R(s) + R(s)$$

Smoothness and Bayesian games

We had $b_i^*(v) = v_i/2$. Depends only on the players own value!

Theorem: Auction is (λ,μ) -smooth and b_i^* is a function of v_i only, then price of anarchy bounded by μ / λ for arbitrary (private value) type distributions

Proof: just take expectations!

All pay auction

Claim: all pay auction is (1/2, 1)-smooth

Max value player: $s_i^*(v)$ uniform random [0,v].

All others: bid s_i*(0)

i not the top value: $u_i(s_i^*, s_{-i}) = 0$

i is the top value, and suppose max other bid is b.

If b> v_i we are set: $\sum_i u_i(s_i^*, s_{-i}) \ge -\frac{v_i}{2} \ge \frac{1}{2}Opt - b$

Else expected value for player i

$$E(u_i(s_i^*, s_{-i})) = -\frac{v_i}{2} + v_i \frac{v_{i-b}}{v_i} \ge \frac{1}{2}v_i - b$$

Bayesian extension theorem

Theorem [Syrgkanis-T'13] Auction game is (λ,μ) -auction smooth, and values are drawn from independent distribution, than the Price of anarchy in the Bayesian game is at most μ/λ

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)....

Trouble: depends on other players and hence we don't know......

Bayesian extension theorem

• Notation v=($v_1, \dots v_n$) value vector and use $b_i^*(v) = b_i^*(v_i, v_{-i})$

Idea: random sample opponent w_{-i} , and bid $b_i^*(v_i, w_{-i})$

Any fixed value v_i, and any player i we get

$$E_{w_{-i}b_{-i}}(u_i(b_i^*(v_i, w_{-i}), b_{-i}|v_i) \ge E_{b_{-i}}(u_i(b))$$

Rename $w_{-i}=v_{-i}$, and also take expectation over v_i $E_{vb}(u_i(b_i^*(v),b_{-i})\geq E_{vb}(u_i(b))$

Bayesian extension theorem (cont)

$$E_{vb}(u_i(b_i^*(v), b_{-i}) \le E_{vb}(u_i(b))$$

Recall smoothness: for all fixed v and b

$$\sum u_i(b_i^*(v),b_i|v_i) \geq \langle \text{lamba } Opt(v) - \mu R(b) \rangle$$

Combine and take expectation over b and v (these are independent in the above!!!)

$$E_{vb}(\sum_i u_i(b)) \geq E_{vb}(\sum_i u_i(b_i^*(v),b_{-i})) \geq \lambda E_v(Opt(v) - \mu \, E_b(R(b))$$

Second price auction

Other pricing schemes:

Highest bid wins, and pays second highest bid, third highest, etc

Similar conclusion if we change $(\mu + 1)/\lambda$

- $\sum_{i} u_i(s_i^*, s_{-i}) \ge \lambda opt \mu b(s)$ where b(s) is the sum of highest bids on items
- And assume no overbidding!

Unit demand bidders

• Values v_{ij} value of item j for player i. If i gets a set of items A_i her value is $\mathbf{v}_i(\mathbf{A}_i) = \max_{j \in A_i} v_{ij}$ (free disposal)

Opt = matching!

(1/2, 1)-smooth: bid $\frac{v_{ij}}{2}$ on item j assigned in Opt

Homework

- ullet All pay variant of multi-item auction from yesterday, also (1/2, 1)-smooth
- All pay auction with two bidder, each with value uniform [0,1] independent. What is the symmetric Nash?
- All pay auction with n bidder, each with value uniform [0,1] independent. What is the symmetric Nash?
- All pay auction with two bidder, each with value uniform [1,2] independent. What is the symmetric Nash?

All pay auction

Highest bidder wins, but all pay!

Example: n players uniform value [0,1], symmetric bidding b(v)

Need $v = argmax_z - b(z) + z^{n-1}v$,

We get $b'(v) = (n-1)v^{n-1}$, so $b(v) = \frac{n-1}{n}v^n$

All pay auction

Highest bidder wins, but all pay!

Example: two players uniform value [1,2], symmetric bidding b(v-1) Value v=1+x, pretend, its 1+z

Need $x = argmax_z - b(z) + z(1+x)$,

We get b'(x)=1+x, so $b(x)=x+\frac{1}{2}x^2$, so for value v bid $(v-1)+\frac{1}{2}(v-1)^2=\frac{1}{2}v^2-\frac{1}{2}$ in [0,1.5]

Homework

Recall setup from yesterday: multiple items concave values.

- ullet From yesterday: Auction A is (1/2, 1)-smooth
- Auction C: all pay. All pay value $v_i(K)$ no matter how many items they get! Show that Auction A is (1/2, 1)-smooth (and hence has a price of anarchy of at most 2
- Auction B: is (1/2, 1)-smooth with bids not prices