Problem Set 3 - Quasirandomness

Suppose that $0 is fixed and <math>(G_n)_{n \in \mathbb{N}}$ with $|V(G_n)| = n$ is a sequence of graphs. Prove that the following properties are equivalent:

- P_1 : G_n is (p, o(n))-jumbled, that is, for all subsets $X, Y \subseteq V(G_n)$, $|e(X, Y) p|X||Y|| = o(n^2)$.
- P_2 : $e(G_n) \ge p\binom{n}{2} + o(n^2)$, $\lambda_1(G_n) = pn + o(n)$ and $|\lambda_2(G_n)| = o(n)$, where $\lambda_i(G_n)$ is the *i*th largest eigenvalue, in absolute value, of the adjacency matrix of G_n .
- P_3 : For all graphs H, the number of labeled induced copies of H in G_n is $(1-p)^{\binom{t}{2}-\ell}p^{\ell}n^t+o(n^t)$, where t=v(H) and $\ell=e(H)$.
- P_4 : $e(G_n) \ge p\binom{n}{2} + o(n^2)$ and the number of labeled cycles of length 4 in G_n is at most $p^4n^4 + o(n^4)$.
- P_5 : $\sum_{u,v} |\operatorname{codeg}(u,v) p^2 n| = o(n^3)$, where, given vertices $u,v \in V(G_n)$, $\operatorname{codeg}(u,v) = |\{x \in V(G_n) : ux, vx \in E(G_n)\}|$.

In P_4 , can we replace cycles of length 4 with cycles of length 3?