Improving Christofides with Randomization & LP

David Shmoys

Cornell University

Traveling Salesman Problem

- (Circuit) Traveling Salesman Problem
 - Given a weighted graph G = (V, E) ($c : E \to \mathbb{R}_+$), find a minimum Hamiltonian circuit

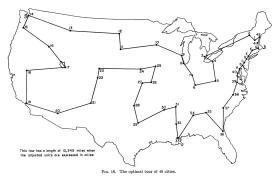
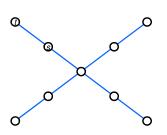


Figure from [Dantzig, Fulkerson, Johnson 1954].

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in \$\mathcal{T}_{min}\$
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathcal{T}_{min} \cup J$
 - Shortcut it into an s-t Hamiltonian path

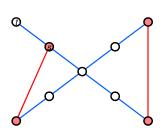
Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in Tmin
 - Find a minimum T-join J
 - Find an s-t Eulerian path of T_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path H



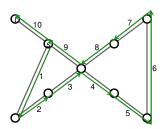
Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in Tmin
 - Find a minimum T-join J
 - Find an s-t Eulerian path of T_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path H



Theorem

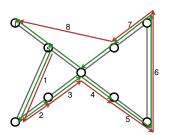
- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in Tmin
 - Find a minimum T-join J
 - Find an s-t Eulerian path of T_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path H



Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum T-join J

 - Shortcut it into an s-t Hamiltonian path H



Theorem

Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

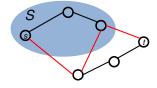
Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

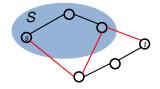
Notation

- Notation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})



Notation

- Notation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})



- For $x \in \mathbb{R}_+^E$ and $F \subset E$,
- $\circ x(F) := \sum_{f \in F} x_f$
- ∘ Incidence vector of F is $(\chi_F)_e := \begin{cases} 1 & \text{if } e \in F \\ 0 & \text{otherwise} \end{cases}$

Polyhedral Characterizations: Algorithms and Analysis

- Minimium Spanning Tree as Linear Programming Problem
- Each LP has an optimal solution at an extreme point
- Spanning Tree polytope of $G := conv\{\chi_{\mathscr{T}} | \mathscr{T} \text{ is a ST of } G\}$
- How do you write an explicit LP for this geometric object?
- [Edmonds, 1965] Let \mathcal{P} be set of partitions of V
- For partition $S = (S_1, ..., S_k)$, let $\delta(S)$ be set of edges with endpoints in different parts

For
$$G = (V, E), \quad \sum_{e} x_e = n - 1,$$

$$\sum_{e \in \delta(S)} x_e \ge k - 1, \quad \forall S = (S_1, \dots, S_k) \in \mathcal{P}$$

$$0 \le x_e \le 1, \qquad \forall e \in E$$

$$x \in \mathbb{R}^E$$

Polyhedral Characterizations: Algorithms and Analysis

- [Edmonds, 1965] Let \mathcal{P} be set of partitions of V
- For partition $S = (S_1, ..., S_k)$, let $\delta(S)$ be set of edges with endpoints in different parts

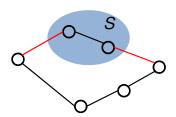
For
$$G = (V, E)$$
, $\sum_{e} x_e = n - 1$,
$$\sum_{e \in \delta(S)} x_e \ge k - 1$$
, $\forall S = (S_1, \dots, S_k) \in \mathcal{P}$
$$0 \le x_e \le 1$$
, $\forall e \in E$

- So can find min spanning tree by solving LP!
- Big LP! Generate just what you "need"
- One important corollary: to prove MST is cheap, exhibit a cheap feasible x: $c(\mathcal{T}_{min}) \leq c(x)$

Held-Karp TSP Relaxation

• Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970]) For G = (V, E),

$$\left\{egin{aligned} &\sum_{e \in \delta(\{v\})} x_e = 2, & orall v \in V \ &\sum_{e \in \delta(S)} x_e \geq 2, & orall S \subsetneq V, S
eq \emptyset \end{aligned}
ight.$$

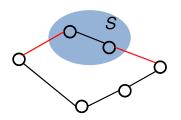


Held-Karp TSP Relaxation

Held-Karp relaxation (for circuit TSP)
 ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 For G = (V, E),

$$\begin{cases} \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ \sum_{e \in \delta(S)} x_e \ge 2, & \forall S \subsetneq V, S \ne \emptyset \\ 0 \le x_e \le 1 & \forall e \in E \end{cases}$$

$$x \in \mathbb{R}^E$$



Let x^* be LP optimum; $c(x^*) \le c(\mathsf{OPT})$

Held-Karp Relaxation

- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by $\frac{n-1}{n}$, is in the spanning tree polytope
 - $\bullet \ \, \text{Spanning Tree polytope of G} := \text{conv}\{\chi_{\mathscr{T}}|\mathscr{T} \text{ is a ST of } G\}$

Held-Karp Relaxation

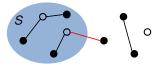
- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by $\frac{n-1}{n}$, is in the spanning tree polytope
 - $\bullet \ \, \text{Spanning Tree polytope of G} := \text{conv}\{\chi_{\mathscr{T}}|\mathscr{T} \text{ is a ST of } G\}$
 - $c(\mathscr{T}_{min}) \leq c(\frac{n-1}{n}X^*) \leq c(X^*) \leq c(OPT)$

Polyhedral Characterization of *T*-joins

Definition

For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

 Polyhedral characterization of T-joins [Edmonds, Johnson 1973]



Polyhedral Characterization of *T*-joins

Definition

For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

 Polyhedral characterization of *T*-joins [Edmonds, Johnson 1973]

 Call a feasible solution a fractional T-join; its cost upper-bounds c(J)

LP-based Analysis of Christofides' Algorithm

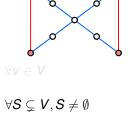
Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.

$$c(\mathscr{T}_{\min}) \le c(\frac{n-1}{n}x^*) \le c(x^*)$$

 $y^* := \frac{1}{2}x^*$ is a fractional T -join



$$(\mathsf{Held\text{-}Karp}) \quad \begin{cases} \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, S \neq \emptyset \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$$

$$(T\text{-join}) \qquad \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$$

LP-based Analysis of Christofides' Algorithm

Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.

$$c(\mathscr{T}_{\min}) \leq c(\frac{n-1}{n}x^*) \leq c(x^*)$$

 $y^* := \frac{1}{2}x^*$ is a fractional T -join
 $c(J) \leq c(y^*) \leq \frac{1}{2}c(x^*)$

$$c(J) \leq c(Y^*) \leq \frac{1}{2}c(X^*)$$

$$c(H) \leq c(\mathscr{T}_{\mathsf{min}} \cup J) \leq c(X^*) + c(Y^*) \leq \frac{3}{2}c(X^*) \leq \frac{3}{2}c(\mathsf{OPT})$$

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum
 - Natural "limit" of guarantee for algorithm based on LP

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum
 - Natural "limit" of guarantee for algorithm based on LP
 - $\left[\frac{4}{3}, \frac{3}{2}\right]$; conjectured $\frac{4}{3}$

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum
 - Natural "limit" of guarantee for algorithm based on LP
 - $\left[\frac{4}{3}, \frac{3}{2}\right]$; conjectured $\frac{4}{3}$
- Path-case
 - $\left[\frac{3}{2}, \frac{5}{3}\right]; \frac{3}{2}$?

• Path-variant Held-Karp relaxation For G = (V, E) and $s, t \in V$,

$$\begin{cases} \sum_{e \in \delta(\{s\})} x_e = \sum_{e \in \delta(\{t\})} x_e = 1 \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \setminus \{s, t\} \\ \sum_{e \in \delta(S)} x_e \ge 1, & \forall S \subsetneq V, |\{s, t\} \cap S| = 1 \\ \sum_{e \in \delta(S)} x_e \ge 2, & \forall S \subsetneq V, |\{s, t\} \cap S| \ne 1, S \ne \emptyset \\ 0 \le x_e \le 1 & \forall e \in E \end{cases}$$

$$x \in \mathbb{R}^E$$

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]

Algorithm of An, Kleinberg, & S

- Best-of-Many Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$
 - For each \mathcal{T}_i :
 - Let T_i be the set of vertices with "wrong" parity of degree: i.e., T_i is the set of even-degree endpoints and other odd-degree vertices in S_i
 - Find a minimum T_i -join J_i
 - Find an *s-t* Eulerian path of $\mathcal{T}_i \cup J_i$
 - Shortcut it into an s-t Hamiltonian path H_i
 - Output the best Hamiltonian path

Algorithm of An, Kleinberg, & S

- Best-of-Many Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$
 - For each \mathcal{T}_i :
 - Let T_i be the set of vertices with "wrong" parity of degree: i.e., T_i is the set of even-degree endpoints and other odd-degree vertices in S_i
 - Find a minimum T_i -join J_i
 - Find an *s-t* Eulerian path of $\mathcal{T}_i \cup J_i$
 - Shortcut it into an s-t Hamiltonian path H_i
 - Output the best Hamiltonian path

- Randomized algorithm for simpler analysis
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{I}_1, \ldots, \mathcal{I}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathcal{I}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathcal{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- $E[c(H)] \le \rho \cdot OPT \implies$ Best-of-Many Christofides' Algorithm is ρ -approx. algorithm

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- $E[c(H)] \le \rho \cdot \mathsf{OPT} \implies$ Best-of-Many Christofides' Algorithm is ρ -approx. algorithm
- $\Pr[e \in \mathscr{T}] = x_e^*$

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- $E[c(H)] \le \rho \cdot \mathsf{OPT} \implies$ Best-of-Many Christofides' Algorithm is ρ -approx. algorithm
- $\Pr[e \in \mathscr{T}] = x_e^*$
 - $\mathsf{E}[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)$
 - The rest of the analysis focuses on bounding c(J)

• Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution

- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Circuit case
 - Christofides' algorithm can be interpreted as using half the Held-Karp solution as a fractional T-join
 - Well-known 2-approximation algorithm can be interpreted as using MST as a fractional T-join

- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Is βx^* a fractional *T*-join for some constant β ?

$$\begin{cases} \sum_{e \in \delta(\{s\})} x_e = \sum_{e \in \delta(\{t\})} x_e = 1 \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \setminus \{s,t\} \\ \sum_{e \in \delta(S)} x_e \geq 1, & \forall S \subsetneq V, |\{s,t\} \cap S| = 1 \\ \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, |\{s,t\} \cap S| \neq 1, S \neq \emptyset \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$$

$$(T\text{-join}) \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}^E_L \end{cases}$$

- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Is βx^* a fractional T-join for some constant β ?
 - Yes, for $\beta = 1$. The present algorithm is a 2-approximation algorithm: $E[c(J)] \le E[c(\beta x^*)] = \beta c(x^*)$

	X *
LB on s-t cut capacities	1
LB on nonseparating cut capacities	2

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on s-t cut capacities	1	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?

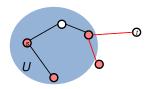
$$(\textit{T-join}) \quad \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^{\textit{E}} \end{cases}$$

	$\chi_{\mathscr{T}}$	\boldsymbol{X}^*	
LB on <i>T-odd</i> s-t cut capacities	1	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it.

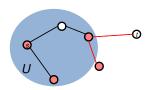


	$\chi_{\mathscr{T}}$	\boldsymbol{x}^*	
LB on <i>T-odd</i> s-t cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it.



Proof. U contains exactly one of s and $t \Rightarrow U$ has even number of odd-degree vertices #edges in $\delta(U)$ = $\sum_{v \in U}$ degree of $v - 2 \cdot (\text{#edges within } U)$

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on <i>T-odd</i> s-t cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it.

• Yes, for $\alpha = 1$. The present algorithm is a 2-approximation algorithm: $E[c(J)] \le E[c(\alpha \chi_{\mathscr{T}})] = \alpha c(x^*)$

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on <i>T-odd</i> s-t cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on T-odd s-t cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

	$\chi_{\mathscr{T}}$	<i>X</i> *	У
			$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$$

- $y := \alpha \chi_{\mathscr{T}} + \beta x^*$ • Choose $\alpha = \beta = \frac{1}{3}$
- $\mathsf{E}[c(y)] = \alpha \mathsf{E}[c(\chi_{\mathscr{T}})] + \beta c(x^*) = (\alpha + \beta)c(x^*)$
- $\mathsf{E}[c(H)] \le \mathsf{E}[c(\mathscr{T})] + \mathsf{E}[c(J)] \le (1 + \alpha + \beta)c(x^*)$

Theorem

The given algorithm is a $(1 + \alpha + \beta)$ -approximation algorithm

- $y := \alpha \chi_{\mathscr{T}} + \beta x^*$ • Choose $\alpha = \beta = \frac{1}{3}$
- $\mathsf{E}[c(y)] = \alpha \mathsf{E}[c(\chi_{\mathscr{T}})] + \beta c(x^*) = (\alpha + \beta)c(x^*)$
- $\mathsf{E}[c(H)] \le \mathsf{E}[c(\mathscr{T})] + \mathsf{E}[c(J)] \le (1 + \alpha + \beta)c(x^*)$

Theorem

The given algorithm is a $(1 + \alpha + \beta)$ -approximation algorithm

 Analysis also works for the original path-variant Christofides' algorithm

	$\chi_{\mathscr{T}}$	X^*	У
LB on T-odd s-t cut capacities	2	1	$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

- Perturb α and β
 - \bullet In particular, decrease α by $\mathbf{2}\epsilon$ and increase β by ϵ

	$\chi_{\mathscr{T}}$	X^*	У
LB on T-odd s-t cut capacities	2	1	$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

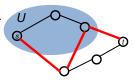
- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most $d := 3\epsilon$

	$\chi_{\mathscr{T}}$	X^*	У
LB on T-odd s-t cut capacities	2	1	$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

- ullet Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most $d := 3\epsilon$

Definition

For $0< au\leq 1$, a au-narrow cut (U,\bar{U}) is an s-t cut with $\sum_{e\in\delta(U)}x_e^*<1+ au$



• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

$$(\textit{T-join}) \quad \begin{cases} \sum_{e \in \delta(\mathcal{S})} y_e \geq 1, & \forall \mathcal{S} \subset V, |\mathcal{S} \cap \mathcal{T}| \text{ odd} \\ y \in \mathbb{R}_+^{\mathcal{E}} \end{cases}$$

• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Proof.

Expected number of tree edges in the cut is equal to $x^*(\delta(U))$:

$$\mathsf{E}[|\delta(U)\cap\mathscr{T}|] = \sum_{e\in\delta(U)}\mathsf{Pr}[e\in\mathscr{T}] = \sum_{e\in\delta(U)}x_e^* = 1$$

So $|\delta(U) \cap \mathcal{T}|$ is identically 1.

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Proof.

- τ -narrow \Rightarrow Expected # of tree edges in the cut is < 1 + τ
- If (U, \bar{U}) is odd w.r.t. T, there must be \geq 2 tree edges in it $\Rightarrow \Pr[|U \cap T| \text{ odd}] \leq \Pr[|\delta(U) \cap (T)| \geq 2]$
- Expt. # of tree edges in cut is $\geq 1 + \Pr[|\delta(U) \cap (T)| \geq 2] \geq 1 + \Pr[|U \cap T| \text{ odd}] \Rightarrow \Pr[|U \cap T| \text{ odd}] < \tau$

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = {\it O}(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint
- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint
- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$
- For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set r_e := dx_e*

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint
- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$
- For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set r_e := dx_e*

Claim

y is a fractional T-join

- Nonseparating cuts & s-t cuts with high capacities are safe
- ullet au-narrow cuts may be violated when they are T-odd
- ullet This happens with probability smaller than $au = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint
- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$
- For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set r_e := dx_e*

Claim

y is a fractional T-join

Claim

$$\mathsf{E}[c(r)] \leq d\tau c(x^*)$$