Algorithms for Network Flows

Lecture 2: Minimum cost flows

Neil Olver

Valparaíso Summer School, 2017

Slides will be available at: http://nolver.net/home/valparaiso

Minimum cost flow

Given: Directed graph G = (V, E), edge capacities $u : E \to \mathbb{R}_+$,

costs $c : E \to \mathbb{R}$, demands $b : V \to \mathbb{R}$ with b(V) = 0.

Goal: Find a *b*-flow of minimum cost.

- ▶ **b**-flow: function $f : E \to \mathbb{R}_+$ with $\nabla f_i = b_i$ for all $i \in V$, $f(e) \le u(e)$ for all $e \in E$.
- ▶ The cost of f is $\sum_{e \in E} c(e) f(e)$.

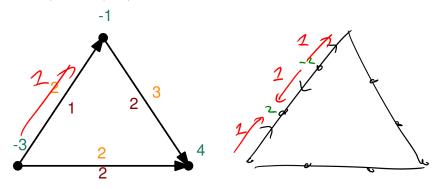
Today's lecture

A strongly polynomial time algorithm for min cost flow due to Goldberg-Tarjan '88.

(The first strongly polynomial algorithm for the problem was by Tardos '85.)

Transshipment problem

- ▶ Same, but with $u(e) = \infty$ for all e.
- Polynomially equivalent

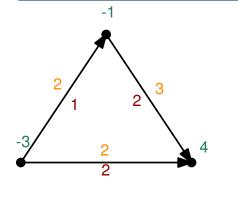


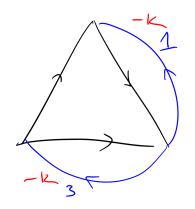
Min cost circulation - also equivalent

Given: Directed graph G = (V, E), edge capacities $u : E \to \mathbb{R}_+$,

costs $c: E \to \mathbb{R}$.

Goal: Find a circulation of minimum cost.





A trivial optimality condition

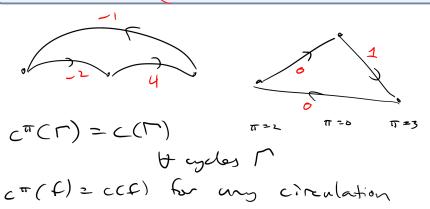
- ▶ If $c \ge 0$, then clearly f = 0 is the optimal circulation.
- Slightly more: if f is a circulation with $\underline{f(e)} = 0$ whenever $\underline{c(e)} > 0$ and $\underline{f(e)} = \underline{u(e)}$ whenever $\underline{c(e)} < 0$, then f is optimal.

Relabelling

▶ A labelling (or potential) is any function $\pi: V \to \mathbb{R}$.

Given a labelling π , define the relabelled costs c^π by

$$c^{\pi}(ij) = c(ij) + \pi_i - \pi_j.$$



Relabelling

- C(rev(e)) = ~ ((a)
- A labelling (or potential) is any function $\pi: V \to \mathbb{R}$.

Given a labelling π , define the relabelled costs c^π by

$$\mathbf{c}^{\pi}(ij) = \mathbf{c}(ij) + \pi_i - \pi_j.$$

Relabelling

▶ A labelling (or potential) is any function $\pi: V \to \mathbb{R}$.

Given a labelling π , define the relabelled costs c^{π} by

$$c^{\pi}(ij) = c(ij) + \pi_i - \pi_j.$$

Clearly sufficient, is it necessary?

LP, dual and complementary slackness

$$\min \sum_{e \in E} c(e)f(e)$$
s.t. $f(e) \leq u(e) \quad \forall e \in E \quad \forall e$

$$f(\delta^{+}(v)) - f(\delta^{-}(v)) = 0 \quad \forall v \in V \quad \pi_{i}$$

$$f \geq 0$$

$$\max - \sum_{i \in E} \max(-c\pi c_{i}), o) u(i)$$

$$S.+. \quad \pi : v \Rightarrow R$$

$$E_{j} = \sum_{i \in E} \max(-c\pi c_{i}), o(i) = \sum_{i \in E} \min(-c\pi c_{i}), o(i)$$

Comp. 3(achness!

f(e) < u(e) => == = > => ch(ij) ? o

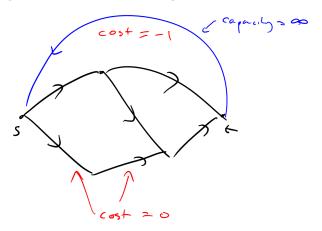
ch(e) > > > f(e) = o.

fortind of Acycle (SEx with C(r) Co.

The Goldberg-Tarjan algorithm

- 1: $f \leftarrow 0$
- 2: **while** ∃ a negative cost cycle **do**
- 3: Find a cycle Γ in G_f of minimum mean cost $c(\Gamma)/|\Gamma|$.
- 4: Push $\delta := \min_{e \in C} \{u_f(e)\}$ units of flow backwards around Γ
- Finding a minimum mean cost cycle can be done in time O(mn) by dynamic programming.

Comparing to Edmonds-Karp for max flow



ϵ -optimality

A circulation f is ϵ -optimal if $\exists \pi$ s.t. $c^{\pi}(e) \geq -\epsilon$ for all $\epsilon \in E_f$.

If all costs are integers, and f is ϵ -optimal for some $\epsilon < 1/n$, then f is optimal.

Pf: For any cycle
$$\Gamma$$
 in E_F ,
$$C(\Gamma) = C^{-1}(\Gamma) > - E|C| > -1$$
36.

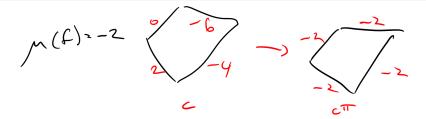
Let

$$\mu(f) := \min_{\Gamma \text{ a cycle in } G_f} \frac{1}{|\Gamma|} \cdot c(\Gamma)$$

$$\epsilon(f) := \min\{\epsilon : f \text{ is } \epsilon\text{-optimal}\} \quad c^{\pi}(\epsilon) \nearrow -\epsilon(f)$$

Lemma

$$\mu(f) = -\epsilon(f).$$



Pf: Choose TT 5t. CT(e) 3-E(f) Heres and from all such TT, one minimising E'= { cu(e)=-E(f)}. E'+9 wat: E' contains a cycle Γ , $\Rightarrow \mu(f) = \frac{1}{|\Gamma|} C(\Gamma) = -\epsilon(f)$ choose u s.t. Se, (u)=4 Suppose not. Can -E' SE(U) *0

(et Ti; = { Ti, its its The Sur & small enough, lu e∈ (+(ν), c +(e) = c +(e) - (> - ε (+). Also for e = 5-(v), ca'(e) = ca(e) + 5 > - E(f). This contradicts on done of T.

Lemma

 $\epsilon(f) = -\mu(f)$ is decreasing throughout the algorithm.

Pf: let f be circulation before any menting by
$$\Gamma$$
, Γ' after.

 $f' = f + \lambda \gamma(\Gamma) \quad \lambda > 0$.

 $c(\Gamma) \leq 0$.

(Loose π 5.6. $c^{T}(e) > 7 - E(f) \quad \forall e \in E_{\Gamma}$.

A weakly polynomial bound

Lemma

Let f_r be the flow obtained after j iterations of the G-T algorithm. Then $\epsilon(f_{s+m}) \leq (1-1/n) \cdot \epsilon(f_s)$ for any s.

Let
$$\Gamma_r$$
 be eycle chosen in Euration Γ .

So $f_{r+1} = f_r + \lambda_r \cdot \chi(\Gamma_r)$

Let Γ_r be s.t. $C^{T}(e) \cdot 3 - E(f)$ decent.

Let $E^- = \{e \in E : C^{T}(e) \subset 0\}$

Choose 1.35 minimal s.t. $\Gamma_e \notin E^-$.

- For each SETEL, rev(Tr) NE = 0. = Ef NE ELVE Some adae of Tr Co l≤ S+m. Now r (fe) = Tel-C(Te) = tr (Te) 2, 15/1 · ((15/1-1)·(-ECFs) +6)

$$7/(1-\sqrt{\Gamma_{kl}})\cdot(-E(f_{\delta}))$$
.

After $O(mn\log(Cn))$ iterations $E(f) \subset h$.

A strongly polynomial bound

We call an edge $e \in \stackrel{\hookrightarrow}{E} \epsilon$ -frozen if $e \notin E_g$ for any ϵ -optimal circulation g.

Claim

If
$$f$$
 is ϵ -optimal w.r.t. π , and $c^{\pi}(e) \leq -2n\epsilon$, then e is ϵ -frozen.

$$c^{\pi}(e) \gamma - \Sigma \quad \forall e \in \mathcal{E}_{f}$$

Pf: (e+ g be any ε -optimal solv.

Suppose $e \in \mathcal{E}_{g}$ -

Let $h = f - g$.

Claim: supp (L) & Eg, rev(suppch)) & Ef. pf: h(e') > 0 => either f(e') > g(e') => g(e) < n(e), f(e) 70 a g(rev(e))> f(rev(e))
=) g(rev(e))>0, f(rev(e)) (n(e)) Either way, e'EEg and e'EEf. Now: since e Eg \Ef, h(e) >0. (Convince yourself!) : In E supp (h), ear. He'GT, rev(e) EER : c+(e') S E.

$$C(\Gamma) = C^{T}(\Gamma) \leq -2\lambda E + (|\Gamma| - 1) \cdot E$$

$$= \frac{1}{|\Gamma|} c(\Gamma) \leq \frac{2\lambda}{|\Gamma|} = \frac{2\lambda}{|\Gamma|}$$

$$= -E.$$

The algorithm terminates after $O(m^2 n \log n)$ iterations.

No edge in 1 is E(F)- Cozen.

(ex f' be flow after mn h 2n ters.
π' he s.t. cπ'(e) 2 - ε(f') be f ε ξ ; 23

$$\varepsilon(f') \leq (1-\frac{1}{2})^{2h^{2h}} \cdot \varepsilon(f)$$

$$\leq \frac{1}{2h} \cdot \varepsilon(f)$$

FRET With car(e) & -ECF) & -2n ECF').

Overview

Max flow	Min cost flow	
Capacity scaling Ahuja-Orlin	Capacity scaling + contraction Orlin	
Shortest paths Edmonds-Karp	Minimum mean cycle Goldberg-Tarjan	
Push-relabel Goldberg-Tarjan		

State of the art

- ► Fastest weakly polynomial algorithm: $\tilde{O}(m\sqrt{n} \operatorname{polylog} U)$ Lee-Sidford '13
- Fastest strongly polynomial algorithm: $O(m \log n(m + n \log n)) = \tilde{O}(m^2)$ Orlin '93

Exercise

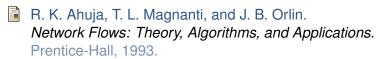
Consider the following variation of the Goldberg-Tarjan algorithm:

- 1: $f \leftarrow 0, \pi \leftarrow 0$
- 2: repeat
- 3: **while** There exists a cycle $\Gamma \subseteq E_f$ with $c^{\pi}(e) < 0$ for all $e \in \Gamma$ do
- 4: Augment on Γ
- 5: Update π so that $c^{\pi}(e) \geq -\epsilon(f)$ for all $e \in E_f$.
- 6: **until** $\epsilon(f) = 0$

Show that this runs in time $O(mn^2 \log(Cn))$ (so a factor m faster than what we got for the original Goldberg-Tarjan algorithm).

You may assume that the last step can be done in time O(mn), and that a finding a cycle (if any) in a directed graph can be done in time O(n).

References



A. V. Goldberg, É Tardos, and R. E. Tarjan. Network Flow Algorithms. Springer, 1990.

A. V. Goldberg and R. E. Tarjan.
Finding minimum-cost circulations by canceling negative cycles. *Journal of the ACM (JACM)*, 36(4):873–886, 1989.

J. B. Orlin.

A faster strongly polynomial minimum cost flow algorithm. *Operations Research*, 41(2):338–350, 1993.