Algorithms for Network Flows

Lecture 4: Generalized flows II: a strongly polynomial algorithm

Neil Olver

Valparaíso Summer School, 2017

Slides will be available at: http://nolver.net/home/valparaiso

1

Today's lecture

- The first strongly polynomial algorithm was given only quite recently by Végh '14. Unfortunately it's very complicated!
- Here we discuss a much simpler (and faster) algorithm by O.-Végh '16.

```
Our algorithm O((m + n \log n) m n \log(n^2/m))
Radzik '04 O((m + n \log n) m n \log B)
Végh '12 O(m^2 n^3)
```

Primal and dual again

$$\max_{s.t.} \nabla f_t$$
s.t.
$$\nabla f_i \ge b_i \qquad \forall i \ne t$$

$$f \ge 0$$

$$\begin{array}{ll} \max & \sum_{j \in V \setminus \{t\}} b_j^{\mu} \\ \text{s.t.} & \gamma_e^{\mu} \leq 1 & \forall e \in E \\ & \mu_t = 1 \\ & \mu_i \in \mathbb{R}_{++} & \forall i \in V \end{array}$$

Primal and dual again

$$\max_{s.t.} \nabla f_t$$

$$s.t. \quad \nabla f_i \ge b_i \quad \forall i \ne t$$

$$f \ge 0$$

$$\begin{array}{ll} \max & \mu_t \sum_{j \in V \setminus \{t\}} b_j^{\mu} \\ \text{s.t.} & \gamma_{\boldsymbol{e}}^{\mu} \leq 1 & \forall \boldsymbol{e} \in E \\ & \mu_i \in \mathbb{R}_{++} & \forall i \in V \end{array}$$

Reminder

Given $f \in \mathbb{R}_+^E$, $\mu \in \mathbb{R}_{++}^V$, (f, μ) is called a fitting pair if:

- \blacktriangleright μ is dual feasible
- $f_e > 0$ implies $\gamma_e^{\mu} = 1$.

If (f, μ) is a fitting pair and $\nabla f_i = b_i$ for all $i \neq t$, then f and μ are both optimal.

Our algorithm will always maintain a fitting pair.

1

Goal: find a contractible edge

An edge $e \in E$ is contractible if $\gamma_e^{\mu^*} = 1$ for any dual optimum μ^* .

- Precisely as we saw for min cost flow, if e is contractible, can extend a dual optimum to $G/\{e\}$ to a dual optimum for G.
- So our goal is to produce a contractible arc in strongly polynomial time.

Goal: find a contractible edge

An edge $e \in E$ is contractible if $\gamma_e^{\mu^*} = 1$ for any dual optimum μ^* .

- Precisely as we saw for min cost flow, if e is contractible, can extend a dual optimum to $G/\{e\}$ to a dual optimum for G.
- So our goal is to produce a contractible arc in strongly polynomial time.

$$\mathsf{Ex}(f,\mu) \coloneqq \sum_{i \neq t} \max \{ \nabla f_i^\mu - b_i^\mu, 0 \}.$$

Lemma

Suppose f is feasible, and (f, μ) is a fitting pair.

Then if $f^{\mu}(\hat{e}) > \text{Ex}(f, \mu)$, \hat{e} is contractible.

Plentiful nodes

lacktriangle Our algorithm will maintain the invariant that $abla f_i^\mu < b_i^\mu$ + 2, so

$$Ex(f, \mu) < 2n$$
.

Given a feasible dual μ , we say i is plentiful if

$$|b_i^{\mu}|\geq 2n^2$$
.

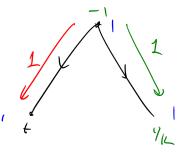
Lemma

If (f, μ) is a fitting pair with f feasible, and i is a plentiful node, then some edge adjacent to i is contractible.

6

A key new idea

- All previous algorithms maintain (roughly) a fitting pair (f, μ) with f feasible.
- We keep a fitting pair (f, μ) —but do not require f to be feasible!



A key new idea

- All previous algorithms maintain (roughly) a fitting pair (f, μ) with f feasible.
- We keep a fitting pair (f, μ) —but do **not** require f to be feasible!

Definition

 μ is safe if there exists a feasible g s.t. (g, μ) is a fitting pair.

▶ Instead, we maintain a fitting pair (f, μ) where μ is safe, $\nabla f_i^{\mu} < b_i^{\mu} + 2$ for all $i \neq t$.

Lemma

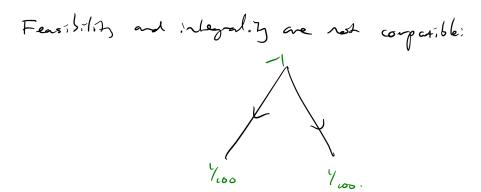
Given such an (f, μ) , if node i is plentiful then we can find a contractible arc adjacent to i.

Pf. In safe => 3 g st. syprig) & tighting le: 1/2 = 13 19:25: supp (f) & tight (m) Mso Dtú = P.+5 Hi#6. 6: 5 06: 5 06: +2.

9

Integrality vs feasibility

A big benefit we gain from working with f infeasible is that we will maintain that f^{μ} is integral.



Our algorithm maintains:

• (f, μ) a fitting pair, with f^{μ} integral

Our algorithm maintains:

- (f, μ) a fitting pair, with f^{μ} integral
- ▶ $\nabla f_i^{\mu} < b_i^{\mu} + 2$ for all i (we don't require feasibility)
- ▶ $\nabla f_i^{\mu} > b_1^{\mu} 1$ for all $i \in V^ V^- := \{i : b_i < 0\}$

11

Our algorithm maintains:

- (f, μ) a fitting pair, with f^{μ} integral
- ▶ $\nabla f_i^{\mu} < b_i^{\mu} + 2$ for all i (we don't require feasibility)
- ▶ $\nabla f_i^{\mu} > b_1^{\mu} 1$ for all $i \in V^ V^- := \{i : b_i < 0\}$
- \blacktriangleright μ is safe

Our algorithm maintains:

- (f, μ) a fitting pair, with f^{μ} integral
- ▶ $\nabla f_i^{\mu} < b_i^{\mu} + 2$ for all i (we don't require feasibility)
- ▶ $\nabla f_i^{\mu} > b_1^{\mu} 1$ for all $i \in V^ V^- := \{i : b_i < 0\}$
- \blacktriangleright μ is safe

Goal

Adjusting f, μ satisfying above, produce j s.t. $|b_j^{\mu}| \ge 2n^2$.

11

Our algorithm

- ▶ **Initialization:** Find an initial fitting pair (f, μ) , with f feasible.
 - Can do this with cycle cancelling, using strongly polynomial result of Radzik.
- ▶ Round f so that f^{μ} is integral, $-1 < \nabla f_i^{\mu} b_i^{\mu} < 2$ for all $i \neq t$.

Our algorithm

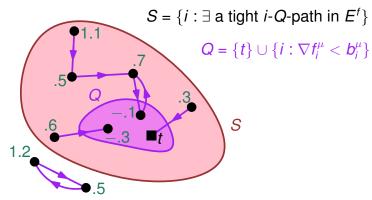
- ▶ **Initialization:** Find an initial fitting pair (f, μ) , with f feasible.
 - Can do this with cycle cancelling, using strongly polynomial result of Radzik.
- ▶ Round f so that f^{μ} is integral, $-1 < \nabla f_i^{\mu} b_i^{\mu} < 2$ for all $i \neq t$.

While $|b_j^{\mu}| < 2n^2$ for all j:

- Augment f / (μ won't change)
- 2. Rescale μ (f^{μ} won't change)

Augmentation step

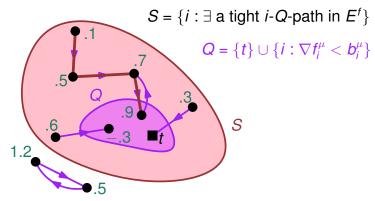
while $\exists i \in S \cap V^-$ with $\nabla f_i^{\mu} \geq b_i^{\mu} + 1$ **do** Send 1 unit of relabelled flow from i to Q



- ▶ Only augment on tight arcs, so (f, μ) stays a fitting pair.
- After augmenting, $\nabla f_i^{\mu} < b_i^{\mu} + 1$ for all $i \in S$.

Augmentation step

while $\exists i \in S \cap V^-$ with $\nabla f_i^{\mu} \geq b_i^{\mu} + 1$ do Send 1 unit of relabelled flow from i to Q



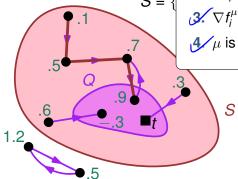
- ▶ Only augment on tight arcs, so (f, μ) stays a fitting pair.
- After augmenting, $\nabla f_i^{\mu} < b_i^{\mu} + 1$ for all $i \in S$.

Augmentation step

while $\exists i \in S \cap V^-$ with $\nabla f_i^{\mu} \geq b$ Send 1 unit of relabelled flow (f, μ) a fitting pair, with f^{μ} integral

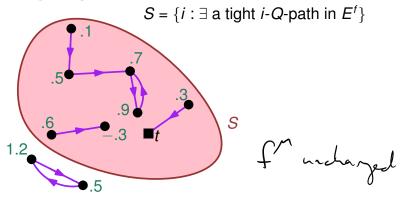
2. $\nabla f_i^{\mu} < b_i^{\mu} + 2$ for all i **3.** $\nabla f_i^{\mu} > b_1^{\mu} - 1$ for all $i \in V^-$

 $4/\mu$ is safe



- Only augment on tight arcs, so (f, μ) stays a fitting pair.
- After augmenting, $\nabla f_i^{\mu} < b_i^{\mu} + 1$ for all $i \in S$.

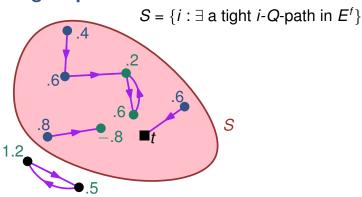
Rescaling step



$$\mu_i' = \begin{cases} \mu_i/\alpha & \text{for } i \in \mathcal{S} \\ \mu_i & \text{for } i \notin \mathcal{S} \end{cases}$$

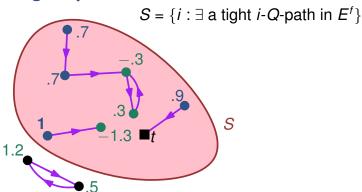
$$f'_e = \begin{cases} f_e/\alpha & \text{for } e \in E(S) \\ f_e & \text{for } e \notin E(S) \end{cases}$$

Rescaling step



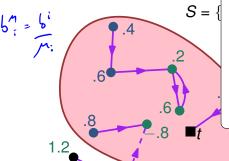
$$\mu_i' = \begin{cases} \mu_i/\alpha & \text{for } i \in S \\ \mu_i & \text{for } i \notin S \end{cases} \qquad f_e' = \begin{cases} f_e/\alpha & \text{for } e \in E(S) \\ f_e & \text{for } e \notin E(S) \end{cases}$$

Rescaling step



$$\mu_i' = \begin{cases} \mu_i/\alpha & \text{for } i \in S \\ \mu_i & \text{for } i \notin S \end{cases} \qquad f_e' = \begin{cases} f_e/\alpha & \text{for } e \in E(S) \\ f_e & \text{for } e \notin E(S) \end{cases}$$

 α chosen maximally s.t. $\gamma_e^{\mu} \leq 1$ for all $e \in \delta^-(S)$, $\nabla f_i^{\mu} \leq b_i^{\mu} + 1$ for all $i \in S$.



 (f,μ) a fitting pair, with f^{μ} integral

 $\nabla f_i^\mu < b_i^\mu + 2 ext{ for all } i$

23. $\nabla f_i^\mu > b_{i}^\mu - 1$ for all $i \in V^-$

 μ is safe

$$\mu_i' = \begin{cases} \mu_i/\alpha & \text{for } i \in \mathcal{S} \\ \mu_i & \text{for } i \notin \mathcal{S} \end{cases}$$

$$f'_e = \begin{cases} f_e/\alpha & \text{for } e \in E(S) \\ f_e & \text{for } e \notin E(S) \end{cases}$$

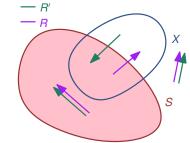
 α chosen maximally s.t. $\gamma_e^{\mu} \leq 1$ for all $e \in \delta^-(S)$, $\nabla f_i^{\mu} \leq b_i^{\mu} + 1$ for all $i \in S$.

Key technical lemma

Safety of μ is preserved in the rescaling step.

$$\mu_i' = \begin{cases} \mu_i/\alpha & i \in S \\ \mu_i & i \notin S \end{cases} \qquad \begin{array}{c} R & = \text{ tight arcs w.r.t. } \mu \\ R' & = \text{ tight arcs w.r.t. } \mu' \end{cases}$$

Suppose for a contradiction that μ is safe, but μ' is not.



Bounding the number of augmentations

Keep track of potentials

$$\Phi := \sum_{i \in V} \nabla f_i^{\mu} - b_i^{\mu}, \qquad \Psi := -\sum_{i \in V^{-}} b_i^{\mu}$$

$$\{ : : 6^{\frac{1}{2}} \operatorname{co} \}.$$

Augmentations: A unchanged, Helpful augmentation: from V to UV".

A helpful angmentation decrease & by 1. can't be more than 1v-1 unhelpful evaugmentations.

Pfr.-6? only incluses in
rescaling for iEv.

	△ (04
Lelo Fel any	-1	0
rescaling	8	2
Lelphel any rescaling So after 3n + 2n3 helphel 2) Fifur with by E	~~~. - 2~ ² .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

A missing detail

An algorithm is strongly polynomial if:

- Number of arithmetic operations is polynomial in the number of integers in the input (e.g., size of the graph)
- 2. Encoding lengths of numbers computed during execution are polynomial in input encoding length
- We need to show that the μ_i values stay under control.
- Dramatically easier for our algorithm than for the algorithm of Végh '14, but still not light entertainment...
- We can exploit the flexibility in some of the rescaling steps to ensure that some μ_i 's stay "nice", and for any j, $\mu_j = \gamma(P)\mu_i$ for some "nice" μ_i and path P.

Extra ingredients for a faster running time

With some extra work, the running time of a souped up version of this algorithm is $O((m + n \log n)mn \log(n^2/m))$.

- Strongly polynomial cycle cancelling algorithm of Radzik is too slow. Replace with an execution of our algorithm on an auxilliary instance.
- Algorithm needs to be implemented efficiently so that not too much time is spent updating labels.
- Don't start from scratch after a contraction.
- A refined potential analysis is needed.

Open question

Strongly polynomial algorithm for minimum cost generalized flow?

Open question

Strongly polynomial algorithm for minimum cost generalized flow?

Thank you!

References

N. Olver and L. Végh.

A simpler and faster strongly polynomial algorithm for generalized flow maximization.

arXiv:1611.01778, 2016.

M. Shigeno.

A survey of combinatorial maximum flow algorithms on a network with gains.

Journal of the Operations Research Society of Japan, 47(4):244-264, 2004.

L. Végh.

A strongly polynomial algorithm for generalized flow maximization. Mathematics of Operations Research.