Exercises: Day 1

Exercise 1 (*) Let \mathcal{P}, \mathcal{Q} be independent Poisson point processes in $[0,1]^2$ whose mean measures are λ and ν , respectively. Show that $\mathcal{P} \cup \mathcal{Q}$ is a Poisson point process in $[0,1]^2$ whose mean measure is $\lambda + \nu$.

Exercise 2 (**) Let $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ be a sequence of Poisson point process in $[0,1]^2$ with n times Lebesgue measure as their mean measure, and let $\mathcal{U}_n = \{u_1, \ldots, u_n\}$ be n points distributed uniformly at random in $[0,1]^2$.

- Show that for each n and m, the law of \mathcal{P}_n given that $|\mathcal{P}_n| = m$ is that of \mathcal{U}_m .
- Show that any event holding with probability at least $1 o(n^{-1/2})$ in \mathcal{P}_n holds with probability at least 1 o(1) in \mathcal{U}_n .

Exercise 3 (**) Let \mathcal{P}_n be a Poisson point process with n times Lebesgue measure as its mean measure in $[0,1]^2$, and let $r_n = \sqrt{\log n/\pi n}$. Let $\mathcal{G} = (\mathcal{P}_n, r_n)$ be the corresponding random geometric graph. Show that for every $\varepsilon > 0$, with high probability there are isolated vertices in $\mathcal{G} = (\mathcal{P}_n, (1-\varepsilon)r_n)$, and with high probability there are no isolated vertices in $\mathcal{G} = (\mathcal{P}_n, (1+\varepsilon)r_n)$.