Hoeffding's Bound

Theorem

Let $X_1, ..., X_n$ be independent random variables with $\mathbf{E}[X_i] = \mu_i$ and $Pr(B_i \le X_i \le B_i + c_i) = 1$, then

$$Pr(|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i| \ge \epsilon) \le e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}$$

Do we need independence?

Martingales

Definition

A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if for all $n \ge 0$ the following hold:

- \bigcirc Z_n is a function of X_0, X_1, \ldots, X_n ;
- **2 E**[| Z_n |] < ∞;
- **3** $\mathbf{E}[Z_{n+1}|X_0,X_1,\ldots,X_n]=Z_n;$

Definition

A sequence of random variables Z_0, Z_1, \ldots is a martingale when it is a martingale with respect to itself, that is

- **1** $\mathbf{E}[|Z_n|] < \infty$;
- **2** $E[Z_{n+1}|Z_0,Z_1,\ldots,Z_n]=Z_n;$

Example

A series of fair games (E[gain] = 0), not necessarily independent...

Game 1: bet \$1.

Game i > 1: bet 2^i if won in round i - 1; bet i otherwise.

 $X_i =$ amount won in *i*th game. ($X_i < 0$ if *i*th game lost).

 Z_i = total winnings at end of *i*th game.

Example

 $X_i =$ amount won in *i*th game. ($X_i < 0$ if *i*th game lost).

 $Z_i = \text{total winnings at end of } i \text{th game.}$

 Z_1, Z_2, \ldots is martingale with respect to X_1, X_2, \ldots

 $\mathbf{E}[X_i]=0.$

$$\mathbf{E}[Z_i] = \sum \mathbf{E}[X_i] = 0 < \infty.$$

$$\mathbf{E}[Z_{i+1}|X_1,X_2,\ldots,X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i.$$

Doob Martingale

Let X_0, X_1, \ldots, X_n be sequence of random variables. Let $Y = f(X_1, \ldots, X_n)$ be a random variable with $\mathbf{E}[|Y|] < \infty$.

Let
$$Z_0 = \mathbf{E}[Y]$$

Let
$$Z_i = \mathbf{E}[Y|X_0, X_1, \dots, X_i], i = 0, 1, \dots, n$$

 Z_0, Z_1, \ldots, Z_n is martingale with respect to X_0, X_1, \ldots, X_n .

Proof

Lemma

$$\mathsf{E}[\mathsf{E}[V|U,W]|W] = \mathsf{E}[V|W].$$

$$Z_i = \mathbf{E}[Y|X_0, X_1, \dots, X_i], i = 0, 1, \dots, n$$

$$\mathbf{E}[Z_{i+1}|X_0, X_1, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y|X_0, X_1, \dots, X_{i+1}]|X_0, X_1, \dots, X_i]
= \mathbf{E}[Y|X_0, X_1, \dots, X_i]
= Z_i.$$

Example: Edge Exposure Martingale

Let G random graph from $G_{n,p}$. Consider $m = \binom{n}{2}$ possible edges in arbitrary order.

$$X_i = \begin{cases} 1 & \text{if } i \text{th edge is present} \\ 0 & \text{otherwise} \end{cases}$$

F(G) =size maximum clique in G.

$$Z_0 = \mathbf{E}[F(G)]$$

$$Z_i = \mathbf{E}[F(G)|X_1, X_2, \dots, X_i], \text{ for } i = 1, \dots, m.$$

 Z_0, Z_1, \ldots, Z_m is a Doob martingale.

(F(G)) could be any finite-valued function on graphs.)

Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, Z_n be a martingale (with respect to X_1, X_2, \ldots) such that $|Z_k - Z_{k-1}| \le c_k$. Then, for all $t \ge 0$ and any $\lambda > 0$

$$\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-\lambda^2/(2\sum_{k=1}^t c_k^2)}.$$

The following corollary is often easier to apply.

Corollary

Let X_0, X_1, \ldots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \le c.$$

Then for all $t \geq 1$ and $\lambda > 0$,

$$\Pr(|X_t - X_0| \ge \lambda c \sqrt{t}) \le 2e^{-\lambda^2/2}.$$

Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let $Z_0, Z_1, ..., Z_n$ be a martingale with respect to $X_1, X_2...$, such that

$$B_k \le Z_k - Z_{k-1} \le B_k + c_k$$

for some constants c_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for all $t \ge 0$ and any $\lambda > 0$

$$\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-2\lambda^2/(\sum_{k=1}^t c_k^2)}.$$

Proof

Let $X^k = X_1, \dots, X_k$ and $Z_{i+1} - Z_i = X_i$, By Hoeffding's Lemma: $E[e^{\lambda X_i} \mid X^{i-1}] \le e^{\lambda^2 c_i^2/8}$.

$$\begin{split} \mathbf{E}[e^{\lambda \sum_{i=1}^{n} X_i}] &= \mathbf{E}\left[\left[\mathbf{E}[e^{\lambda \sum_{i=1}^{n} X_i} \mid X^{n-1}]\right] \right. \\ &= \mathbf{E}\left[e^{\lambda \sum_{i=1}^{n-1} X_i} \mathbf{E}[e^{\lambda X_n} \mid X^{n-1}]\right] \\ &\leq e^{\lambda^2 c_n^2/8} \mathbf{E}\left[e^{\lambda \sum_{i=1}^{n-1} X_i}\right] \\ &\leq e^{\lambda^2 \sum_{i=1}^{n} c_i^2/8} \end{split}$$

$$\begin{split} & \textit{Pr}\big(|Z_t - Z_0| \geq \lambda\big) \leq e^{-\lambda \epsilon} e^{\lambda^2 \sum_{i=1}^n c_i^2/8} \leq 2e^{-2\epsilon^2/(\sum_{k=1}^t c_k^2)}, \\ & \text{For } \lambda = \frac{4\epsilon}{\sum_{i=1}^n c_i^2}. \end{split}$$

Tail Inequalities: Doob Martingales

Let X_1, \ldots, X_n be sequence of random variables.

Random variable Y:

- Y is a function of X_1, X_2, \dots, X_n ;
- $\mathbf{E}[|Y|] < \infty$.

Let
$$Z_i = \mathbf{E}[Y|X_1, ..., X_i], i = 0, 1, ..., n.$$

 Z_0, Z_1, \ldots, Z_n is martingale with respect to X_1, \ldots, X_n .

If we can use Azuma-Hoeffding inequality:

$$\Pr(|Z_n - Z_0| \ge \lambda) \le \dots$$

then we have,

$$\Pr(|Y - \mathbf{E}[Y]| \ge \lambda) \le \dots$$

Example: Pattern Matching

Given a string and a pattern: is the pattern interesting?

Does it appear more often than is expected in a random string?

Is the number of occurrences of the pattern concentrated around the expectation?

 $A = (a_1, a_2, \dots, a_n)$ string of characters, each chosen independently and uniformly at random from Σ , with $s = |\Sigma|$.

pattern: $B = (b_1, \ldots, b_k)$ fixed string, $b_i \in \Sigma$.

F= number occurrences of B in random string A.

$$\mathbf{E}[F] = ?$$

 $A = (a_1, a_2, ..., a_n)$ string of characters, each chosen independently and uniformly at random from Σ , with $m = |\Sigma|$.

pattern: $B = (b_1, \dots, b_k)$ fixed string, $b_i \in \Sigma$.

F= number occurrences of B in random string S.

$$\mathbf{E}[F] = (n-k+1)\left(\frac{1}{m}\right)^k.$$

Can we bound the deviation of *F* from its expectation?

F= number occurrences of B in random string A.

$$Z_0 = \mathbf{E}[F]$$

$$Z_i = \mathbf{E}[F|a_1, ..., a_i], \text{ for } i = 1, ..., n.$$

 Z_0, Z_1, \ldots, Z_n is a Doob martingale.

$$Z_n = F$$
.

F= number occurrences of B in random string A.

$$Z_0 = \mathbf{E}[F]$$

$$Z_i = \mathbf{E}[F|a_1, ..., a_i], \text{ for } i = 1, ..., n.$$

 Z_0, Z_1, \ldots, Z_n is a Doob martingale.

$$Z_n = F$$
.

Each character in A can participate in no more than k occurrences of B:

$$|Z_i - Z_{i+1}| \le k.$$

Azuma-Hoeffding inequality (version 1):

$$\Pr(|F - \mathbf{E}[F]| \ge \lambda) \le 2e^{-\lambda^2/(2nk^2)}.$$

McDiarmid Bound

 $f(X_1, X_2, ..., X_n)$ satisfies Lipschitz condition with bound c if for any i and any set of values $x_1, ..., x_n$ and y:

$$|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_n)| \leq c_i.$$

Then,

$$\Pr(|Z_n - Z_0| \ge \lambda) = \Pr(|f(\dots) - \mathbf{E}[f(\dots)]| \ge \lambda)$$

$$\le 2e^{-2\lambda^2/(\sum_{k=1}^n c_k^2)}.$$

If X_1, \ldots, X_n are independent then $|Z_i - Z_{i-1}| \le c_i$.

$$Z_k - Z_{k-1} = \mathbf{E}[f(\bar{X}) \mid X^k] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}].$$

Hence $Z_k - Z_{k-1}$ is bounded above by

$$\sup_{X} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = X] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}]$$

and bounded below by

$$\inf_{y} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = y] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}].$$

Therefore, if we let

$$B_k = \inf_{V} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = y] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}],$$

then if we can bound

$$\sup_{\mathbf{v}} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = x] - \inf_{\mathbf{v}} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = y] \le c,$$

then we will have appropriately bounded the gap $Z_k - Z_{k-1}$.

$$Z_{k} - Z_{k-1} = \sup_{x,y} \left(\mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_{k} = x] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_{k} = y] \right)$$
$$= \sup_{x,y} \mathbf{E}[f(\bar{X}, x) - f(\bar{X}, y) \mid X^{k-1}].$$

Because the X_i are independent, the probability of any specific set of values for X_{k+1} through X_n does not depend on the values of X_1, \ldots, X_k . Hence, for any values z_1, \ldots, z_{k-1} we have that

$$\sup_{x,y} \mathbf{E}[f(\bar{X},x) - f(\bar{X},y) \mid X_1 = z_1, \dots, X_{k-1} = z_{k-1}]$$

is equal to

$$\sup \sum Pr((X_{k+1}=z_{k+1})\cap\ldots\cap(X_n=z_n))\cdot(f(\bar{z},x)-f(\bar{z},y)).$$

But

$$f(\bar{z},x) - f(\bar{z},y) < c,$$

and hence so is

$$\mathbf{E}[f(\bar{X},x)-f(\bar{X},y)\mid X^{k-1}],$$

giving the required bound.

Application: Balls and Bins

We are throwing m balls independently and uniformly at random into n bins.

Let X_i = the bin that the *i*th ball falls into.

Let *F* be the number of empty bins after the *m* balls are thrown. Then the sequence

$$Z_i = \mathbf{E}[F \mid X_1, \dots, X_i]$$

is a Doob martingale.

 $F = f(X_1, X_2, ..., X_n)$ satisfies the Lipschitz condition with bound 1, thus $|Z_{i+1} - Z_i| \le 1$

We therefore obtain

$$\Pr(|F - \mathbf{E}[F]| \ge \epsilon) \le 2e^{-\epsilon^2/2m}$$

Here

$$\mathbf{E}[F] = n \left(1 - \frac{1}{n} \right)^m,$$

but we could obtain the concentration result without knowing E[F].

Application: Chromatic Number

Given a random graph G in $G_{n,p}$, the chromatic number $\chi(G)$ is the minimum number of colors needed in order to color all vertices of the graph so that no adjacent vertices have the same color. We use the vertex exposure martingale defined Let G_i be the random subgraph of G induced by the set of vertices $1, \ldots, i$, let $Z_0 = \mathbf{E}[\chi(G)]$, and let

$$Z_i = \mathbf{E}[\chi(G) \mid G_1, \ldots, G_i].$$

Since a vertex uses no more than one new color, again we have that the gap between Z_i and Z_{i-1} is at most 1, We conclude

$$\Pr(|\chi(G) - \mathbf{E}[\chi(G)]| \ge \lambda \sqrt{n}) \le 2e^{-2\lambda^2}.$$

This result holds even without knowing $\mathbf{E}[\chi(G)]$.

Example: Edge Exposure Martingale

Let G random graph from $G_{n,p}$. Consider $m = \binom{n}{2}$ possible edges in arbitrary order.

$$X_i = \begin{cases} 1 & \text{if } i \text{th edge is present} \\ 0 & \text{otherwise} \end{cases}$$

F(G) =size maximum clique in G.

$$Z_0 = \mathbf{E}[F(G)]$$

$$Z_i = \mathbf{E}[F(G)|X_1, X_2, \dots, X_i], \text{ for } i = 1, \dots, m.$$

 Z_0, Z_1, \ldots, Z_m is a Doob martingale.

(F(G)) could be any finite-valued function on graphs.)