Uniform Convergence for Learning Binary Classification

- Given a concept class C, and a training set sampled from D, $\{(x_i, c(x_i)) \mid i = 1, ..., m\}$.
- For any $h \in \mathcal{C}$, let $\Delta(c, h)$ be the set of items on which the two classifiers differ: $\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\}$
- For the realizable case we need a training set (sample) that with probability $1-\delta$ intersects every set in

$$\{\Delta(c,h) \mid Pr(\Delta(c,h)) \ge \epsilon\}$$
 $(\epsilon\text{-net})$

• For the unrealizable case we need a training set that with probability $1-\delta$ estimates, within additive error ϵ , every set in

$$\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\}$$
 (ϵ -sample).

- Under what conditions can a finite sample achieve these requirements?
 - What sample size is needed?

Uniform Convergence Sets

Given a collection R of sets in a universe X, under what conditions a finite sample N from an arbitrary distribution \mathcal{D} over X, satisfies with probability $1 - \delta$,

$$\forall r \in R, \ \Pr_{\mathcal{D}}(r) \ge \epsilon \Rightarrow \ r \cap N \ne \emptyset$$
 $(\epsilon\text{-net})$

2 for any $r \in R$,

$$\left| \Pr_{\mathcal{D}}(r) - \frac{|N \cap r|}{|N|} \right| \le \varepsilon$$
 (ϵ -sample)

Vapnik–Chervonenkis (VC) - Dimension

(X, R) is called a "range space":

- X = finite or infinite set (the set of objects to learn)
- R is a family of subsets of X, $R \subseteq 2^X$.
 - In learning, $R = \{\Delta(c, h) \mid h \in \mathcal{C}\}$, where \mathcal{C} is the concept class, and c is the correct classification.
- For a finite set $S \subseteq X$, s = |S|, define the projection of R on S.

$$\Pi_R(S) = \{ r \cap S \mid r \in R \}.$$

- If $|\Pi_R(S)| = 2^s$ we say that R shatters S.
- The VC-dimension of (X, R) is the maximum size of S that is shattered by R. If there is no maximum, the VC-dimension is ∞ .

The VC-Dimension of a Collection of Intervals

C = collections of intervals in [A,B] – can shatter 2 point but not 3. No interval includes only the two red points

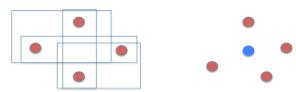
The VC-dimension of C is 2

Collection of Half Spaces in the Plane

C – all half space partitions in the plane. Any 3 points can be shattered:

- Cannot partition the red from the blue points
- The VC-dimension of half spaces on the plane is 3
- The VC-dimension of half spaces in d-dimension space is d+1

Axis-parallel rectangles on the plane

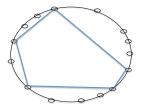


4 points that define a convex hull can be shattered.

No five points can be shattered since one of the points
must be in the convex hull of the other four.

Convex Bodies in the Plane

• C – all convex bodies on the plane



Any subset of the point can be included in a convex body. The VC-dimension of C is ∞

A Few Examples

- C = set of intervals on the line. Any two points can be shattered, no three points can be shattered.
- C = set of linear half spaces in the plane. Any three points can be shattered but no set of 4 points. If the 4 points define a convex hull let one diagonal be 0 and the other diagonal be 1. If one point is in the convex hull of the other three, let the interior point be 1 and the remaining 3 points be 0.
- C = set of axis-parallel rectangles on the plane. 4 points that define a convex hull can be shattered. No five points can be shattered since one of the points must be in the convex hull of the other four.
- C = all convex sets in R². Let S be a set of n points on a boundary of a cycle. Any subset Y ⊂ S defines a convex set that doesn't include S \ Y.

The Main Result

Theorem

Let \mathcal{C} be a concept class with VC-dimension d then

1 C is PAC learnable in the realizable case with

$$m = O(\frac{d}{\epsilon} \ln \frac{d}{\epsilon} + \frac{1}{\epsilon} \ln \frac{1}{\delta})$$
 (ϵ -net)

samples.

2 C is PAC learnable in the unrealizable case with

$$m = O(\frac{d}{\epsilon^2} \ln \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\delta})$$
 (ϵ -sample)

samples.

The sample size is not a function of the number of concepts, or the size of the domain!

Sauer's Lemma

For a finite set $S \subseteq X$, s = |S|, define the projection of R on S,

$$\Pi_R(S) = \{r \cap S \mid r \in R\}.$$

Theorem

Let (X, R) be a range space with VC-dimension d, for any $S \subseteq X$, such that |S| = n,

$$|\Pi_R(S)| \leq \sum_{i=0}^d \binom{n}{i}.$$

For n = d, $|\Pi_R(S)| \le 2^d$, and for $n > d \ge 2$, $|\Pi_R(S)| \le n^d$.

The number of distinct concepts on n elements grows polynomially in the VC-dimension!

Proof

- By induction on d, and for a fixed d, by induction on n.
- True for d = 0 or n = 0, since $\Pi_R(S) = \{\emptyset\}$.
- Assume that the claim holds for $d' \le d 1$ and any n, and for d and all $|S'| \le n 1$.
- Fix $x \in S$ and let $S' = S \{x\}$.

$$|\Pi_{R}(S)| = |\{r \cap S \mid r \in R\}|$$

$$|\Pi_{R}(S')| = |\{r \cap S' \mid r \in R\}|$$

$$|\Pi_{R(x)}(S')| = |\{r \cap S' \mid r \in R \text{ and } x \notin r \text{ and } r \cup \{x\} \in R\}|$$

• For $r_1 \cap S \neq r_2 \cap S$ we have $r_1 \cap S' = r_2 \cap S'$ iff $r_1 = r_2 \cup \{x\}$, or $r_2 = r_1 \cup \{x\}$. Thus,

$$|\Pi_R(S)| = |\Pi_R(S')| + |\Pi_{R(x)}(S')|$$

Fix $x \in S$ and let $S' = S - \{x\}$.

```
\begin{aligned} |\Pi_{R}(S)| &= |\{r \cap S \mid r \in R\}| \\ |\Pi_{R}(S')| &= |\{r \cap S' \mid r \in R\}| \\ |\Pi_{R(x)}(S')| &= |\{r \cap S' \mid r \in R \text{ and } x \notin r \text{ and } r \cup \{x\} \in R\}| \end{aligned}
```

- The VC-dimension of $(S, \Pi_R(S))$ is no more than the VC-dimension of (X, R), which is d.
- The VC-dimension of the range space $(S', \Pi_R(S'))$ is no more than the VC-dimension of $(S, \Pi_R(S))$ and |S'| = n 1, thus by the induction hypothesis $|\Pi_R(S')| \leq \sum_{i=0}^d \binom{n-1}{i}$.
- For each $r \in \Pi_{R(x)}(S')$ the range set $\Pi_S(R)$ has two sets: r and $r \cup \{x\}$. If B is shattered by $(S', \Pi_{R(x)}(S'))$ then $B \cup \{x\}$ is shattered by (X, R), thus $(S', \Pi_{R(x)}(S'))$ has VC-dimension bounded by d-1, and $|\Pi_{R(x)}(S')| \leq \sum_{i=0}^{d-1} \binom{n-1}{i}$.

$$|\Pi_R(S)| = |\Pi_R(S')| + |\Pi_{R(x)}(S')|$$

$$|\Pi_{R}(S)| \leq \sum_{i=0}^{d} {n-1 \choose i} + \sum_{i=0}^{d-1} {n-1 \choose i}$$

$$= 1 + \sum_{i=1}^{d} \left({n-1 \choose i} + {n-1 \choose i-1} \right)$$

$$= \sum_{i=0}^{d} {n \choose i} \leq \sum_{i=0}^{d} \frac{n^{i}}{i!} \leq n^{d}$$

[We use
$$\binom{n-1}{i-1} + \binom{n-1}{i} = \frac{(n-1)!}{(i-1)!(n-i-1)!} (\frac{1}{n-i} + \frac{1}{i}) = \binom{n}{i}$$
]

Learning - the Realizable Case

- Let X be a set of items, D a distribution on X, and C a set of concepts on X.
- $\Delta(c,c') = \{c \setminus c' \cup c' \setminus c \mid c' \in \mathcal{C}\}$
- We take m samples and choose a concept c', while the correct concept is c.
- If $Pr_D(\{x \in X \mid c'(x) \neq c(x)\}) > \epsilon$ then, $Pr(\Delta(c, c')) \geq \epsilon$, and no sample was chosen in $\Delta(c, c')$
- How many samples are needed so that with probability 1δ all sets $\Delta(c, c')$, $c' \in \mathcal{C}$, with $Pr(\Delta(c, c')) \geq \epsilon$, are hit by the sample?

ϵ -net

Definition

Let (X, R) be a range space, with a probability distribution D on X. A set $N \subseteq X$ is an ϵ -net for X with respect to D if

$$\forall r \in R, \ \Pr_{\mathcal{D}}(r) \ge \epsilon \Rightarrow \ r \cap N \ne \emptyset.$$

Theorem

Let (X, R) be a range space with VC-dimension bounded by d. With probability $1 - \delta$, a random sample of size

$$m \ge \frac{8d}{\epsilon} \ln \frac{16d}{\epsilon} + \frac{4}{\epsilon} \ln \frac{4}{\delta}$$

is an ϵ -net for (X, R).

How to Sample an ϵ -net?

- Let (X, R) be a range space with VC-dimension d. Let M be m independent samples from X.
- Let $E_1 = \{ \exists r \in R \mid Pr(r) \geq \epsilon \text{ and } |r \cap M| = 0 \}$. We want to show that $Pr(E_1) \leq \delta$.
- Choose a second sample T of m independent samples.
- Let $E_2 = \{\exists r \in R \mid Pr(r) \ge \epsilon \text{ and } |r \cap M| = 0 \text{ and } |r \cap T| \ge \epsilon m/2\}$

Lemma

$$Pr(E_2) \leq Pr(E_1) \leq 2Pr(E_2)$$

Lemma

$$Pr(E_2) \leq Pr(E_1) \leq 2Pr(E_2)$$

$$E_1 = \{ \exists r \in R \mid Pr(r) \ge \epsilon \text{ and } |r \cap M| = 0 \}$$

$$E_2 = \{ \exists r \in R \mid Pr(r) \ge \epsilon \text{ and } |r \cap M| = 0 \text{ and } |r \cap T| \ge \epsilon m/2 \}$$

$$\frac{Pr(E_2)}{Pr(E_1)} = Pr(E_2 \mid E_1) \ge Pr(|T \cap r| \ge \epsilon m/2) \ge 1/2$$

Since $|T \cap r|$ has a Binomial distribution $B(m, \epsilon)$, $Pr(|T \cap r| < \epsilon m/2) \le e^{-\epsilon m/8} < 1/2$ for $m \ge 8/\epsilon$.

$$E_2 = \{\exists r \in R \mid Pr(r) \ge \epsilon \text{ and } |r \cap M| = 0 \text{ and } |r \cap T| \ge \epsilon m/2\}$$

$$E_2' = \{\exists r \in R \mid |r \cap M| = 0 \text{ and } |r \cap T| \ge \epsilon m/2\}$$

Lemma

$$Pr(E_1) \leq 2Pr(E_2) \leq 2Pr(E_2') \leq 2(2m)^d 2^{-\epsilon m/2}.$$

Choose an arbitrary set Z of size 2m and divide it randomly to Mand T. For a fixed $r \in R$ and $k = \epsilon m/2$, let

$$E_r = \{|r \cap M| = 0 \text{ and } |r \cap T| \ge k\} = \{|M \cap r| = 0 \text{ and } |r \cap (M \cup T)| \ge k\}$$

$$E_r = \{|r \cap M| = 0 \text{ and } |r \cap T| \ge k\} = \{|M \cap r| = 0 \text{ and } |r \cap (M \cup T)| \ge k\}$$

$$Pr(E_r) = Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| > k)Pr(|r \cap (M \cup T)| > k)$$

$$Pr(E_r) = Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \ge k)Pr(|r \cap (M \cup T)| \ge k)$$

$$Pr(E_r) = Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \ge k)Pr(|r \cap (M \cup T)| \ge k)$$

$$\le Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \ge k) \le \frac{\binom{2m-k}{m}}{\binom{2m}{2m}}$$

$$Pr(E_r) = Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \ge k) Pr(|r \cap (M \cup T)| \le k)$$

$$\leq Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \ge k) \le \frac{\binom{2m-k}{m}}{\binom{2m}{2m}}$$

$$\leq Pr(|M \cap r| = 0 \mid |r \cap (M \cup T)| \geq k) \leq \frac{\binom{2m-k}{m}}{\binom{2m}{m}}$$

$$\leq Pr(|M|+r| = 0 \mid |r+r|(M \cup r)| \geq k) \leq \frac{2m}{\binom{2m}{m}}$$

$$= \frac{m(m-1)....(m-k+1)}{2m(2m-1)....(2m-k+1)} \leq 2^{-\epsilon m/2}$$

Since $|\Pi_R(Z)| \leq (2m)^d$,

$$Pr(E_2') \leq (2m)^d 2^{-\epsilon m/2}.$$

$$Pr(E_1) \leq 2Pr(E_2') \leq 2(2m)^d 2^{-\epsilon m/2}$$
.

Theorem

Let (X, R) be a range space with VC-dimension bounded by d. With probability $1 - \delta$, a random sample of size

$$m \ge \frac{8d}{\epsilon} \ln \frac{16d}{\epsilon} + \frac{4}{\epsilon} \ln \frac{4}{\delta}$$

is an ϵ -net for (X, R).

We need to show that $(2m)^d 2^{-\epsilon m/2} \le \delta$. for $m \ge \frac{8d}{\epsilon} \ln \frac{16d}{\epsilon} + \frac{4}{\epsilon} \ln \frac{1}{\delta}$.

Arithmetic

We show that $(2m)^d 2^{-\epsilon m/2} \le \delta$. for $m \ge \frac{8d}{\epsilon} \ln \frac{16d}{\epsilon} + \frac{4}{\epsilon} \ln \frac{1}{\delta}$. Equivalently, we require

$$\epsilon m/2 \ge \ln(1/\delta) + d \ln(2m)$$
.

Clearly $\epsilon m/4 \ge \ln(1/\delta)$, since $m > \frac{4}{\epsilon} \ln \frac{1}{\delta}$.

We need to show that $\epsilon m/4 \ge d \ln(2m)$.

Lemma

If
$$y \ge x \ln x > e$$
, then $\frac{2y}{\ln x} \ge x$.

Proof.

For $y = x \ln x$ we have $\ln y = \ln x + \ln \ln x \le 2 \ln x$. Thus

$$\frac{2y}{\ln y} \ge \frac{2x \ln x}{2 \ln x} = x.$$

Differentiating $f(y) = \frac{\ln y}{2y}$ we find that f(y) is monotonically decreasing when $y \ge x \ln x \ge e$, and hence $\frac{2y}{\ln y}$ is monotonically increasing on the same interval, proving the lemma.

Let
$$y=2m\geq \frac{16d}{\epsilon}\ln\frac{16d}{\epsilon}$$
 and $x=\frac{16d}{\epsilon}$, we have
$$\frac{4m}{\ln(2m)}\geq \frac{16d}{\epsilon},$$
 so
$$\frac{\epsilon m}{4}\geq d\ln(2m)$$

as required.

Lower Bound on Sample Size

Theorem

A random sample of a range space with VC dimension $\frac{d}{d}$ that with probability at least $1 - \delta$ is an ϵ -net must have size $\Omega(\frac{d}{\epsilon})$.

Consider a range space (X, R), with $X = \{x_1, \dots, x_d\}$, and $R = 2^X$.

Define a probability distribution D:

$$Pr(x_1) = 1 - 4\epsilon$$

 $Pr(x_2) = Pr(x_3) = \cdots = Pr(x_d) = \frac{4\epsilon}{d-1}$

Let
$$X' = \{x_2, \dots, x_d\}.$$

Let
$$X' = \{x_2, \dots, x_d\}$$
.
 $Pr(x_2) = Pr(x_3) = \dots = Pr(x_d) = \frac{4\epsilon}{d-1}$

Let S be a sample of $m = \frac{(d-1)}{16\epsilon}$ examples from the distribution D.

Let B be the event $|S \cap X'| \le (d-1)/2$, then $Pr(B) \ge 1/2$.

With probability $\geq 1/2$, the sample does not hit a set of probability

$$\frac{d-1}{2}\frac{4\epsilon}{d-1} = 2\epsilon$$

Corollary

A range space has a finite ϵ -net iff its VC-dimension is finite.

Back to Learning

- Let X be a set of items, D a distribution on X, and C a set of concepts on X.
- $\Delta(c,c') = \{c \setminus c' \cup c' \setminus c \mid c' \in \mathcal{C}\}$
- We take m samples and choose a concept c', while the correct concept is c.
- If $Pr_D(\{x \in X \mid c'(x) \neq c(x)\}) > \epsilon$ then, $Pr(\Delta(c, c')) \geq \epsilon$, and no sample was chosen in $\Delta(c, c')$
- How many samples are needed so that with probability $1-\delta$ all sets $\Delta(c,c')$, $c'\in\mathcal{C}$, with $Pr(\Delta(c,c'))\geq\epsilon$, are hit by the sample?

Theorem

The VC-dimension of $(X, \{\Delta(c, c') \mid c' \in C\})$ is the same as (X, C).

Proof.

We show that

$$\{c' \cap S \mid c' \in \mathcal{C}\} \rightarrow \{((c' \setminus c) \cup (c \setminus c')) \cap S \mid c' \in \mathcal{C}\}\$$
 is a bijection. Assume that $c_1 \cap S \neq c_2 \cap S$, then w.o.l.g. $x \in (c_1 \setminus c_2) \cap S$.

$$x \notin c \text{ iff } x \in ((c_1 \setminus c) \cup (c \setminus c_1)) \cap S \text{ and } x \notin ((c_2 \setminus c) \cup (c \setminus c_2)) \cap S.$$

$$x \in c \text{ iff } x \notin ((c_1 \setminus c) \cup (c \setminus c_1)) \cap S \text{ and } x \in ((c_2 \setminus c) \cup (c \setminus c_2)) \cap S$$

Thus,
$$c_1 \cap S \neq c_2 \cap S$$
 iff

 $((c_1 \setminus c) \cup (c \setminus c_1)) \cap S \neq ((c_2 \setminus c) \cup (c \setminus c_2)) \cap S$. The projection on S in both range spaces has equal size.

Uniform Convergence Sets

Given a collection R of sets in a universe X, under what conditions a finite sample N from an arbitrary distribution \mathcal{D} over X, satisfies with probability $1 - \delta$,

$$\forall r \in R, \;\; \Pr_{\mathcal{D}}(r) \geq \epsilon \Rightarrow \; r \cap N \neq \emptyset \qquad (\epsilon\text{-net})$$

2 for any $r \in R$,

$$\left| \Pr_{\mathcal{D}}(r) - \frac{|N \cap r|}{|N|} \right| \le \varepsilon$$
 (ϵ -sample)

PAC Learning

Theorem

A concept class \mathcal{C} is PAC-learnable iff the VC-dimension of the range space defined by \mathcal{C} is finite.

Theorem

Let \mathcal{C} be a concept class that defines a range space with VC dimension $\frac{d}{\delta}$. For any $0 < \delta, \epsilon \leq 1/2$, there is an

$$m = O\left(rac{d}{\epsilon}\lnrac{d}{\epsilon} + rac{1}{\epsilon}\lnrac{1}{\delta}
ight)$$

such that \mathcal{C} is PAC learnable with m samples.

Application: Unrealizable (Agnostic) Learning

- We are given a training set $\{(x_1, c(x_1)), \dots, (x_m, c(x_m))\}$, and a concept class C
- No hypothesis in the concept class \mathcal{C} is consistent with all the training set $(c \notin \mathcal{C})$.
- Relaxed goal: Let c be the correct concept. Find $c' \in C$ such that

$$\Pr_{\mathcal{D}}(c'(x) \neq c(x)) \leq \inf_{h \in \mathcal{C}} \Pr_{\mathcal{D}}(h(x) \neq c(x)) + \epsilon.$$

• An $\epsilon/2$ -sample of the range space $(X, \Delta(c, c'))$ gives enough information to identify an hypothesis that is within ϵ of the best hypothesis in the concept class.

When does the sample identify the correct rule? The unrealizable (agnostic) case

- The unrealizable case c may not be in C.
- For any $h \in \mathcal{C}$, let $\Delta(c, h)$ be the set of items on which the two classifiers differ: $\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\}$
- For the training set $\{(x_i, c(x_i)) \mid i = 1, \dots, m\}$, let

$$\tilde{Pr}(\Delta(c,h)) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{h(x_i) \neq c(x_i)}$$

- Algorithm: choose $h^* = \arg\min_{h \in \mathcal{C}} \tilde{Pr}(\Delta(c, h))$.
- If for every set $\Delta(c, h)$,

$$|Pr(\Delta(c,h)) - \tilde{Pr}(\Delta(c,h))| \le \epsilon$$

then

$$Pr(\Delta(c, h^*)) < opt(C) + 2\epsilon$$
.

where $opt(\mathcal{C})$ is the error probability of the best classifier in \mathcal{C} .

If for every set $\Delta(c, h)$,

$$|Pr(\Delta(c,h)) - \tilde{Pr}(\Delta(c,h))| \le \epsilon,$$

then

$$Pr(\Delta(c, h^*)) \leq opt(C) + 2\epsilon.$$

where opt(C) is the error probability of the best classifier in C. Let \bar{h} be the best classifier in C. Since the algorithm chose h^* ,

$$\tilde{Pr}(\Delta(c, h^*)) \leq \tilde{Pr}(\Delta(c, \bar{h})).$$

Thus,

$$egin{array}{ll} extit{Pr}(\Delta(c,h^*)) - extit{opt}(\mathcal{C}) & \leq & ilde{ extit{Fr}}(\Delta(c,h^*)) - extit{opt}(\mathcal{C}) + \epsilon \ & \leq & ilde{ extit{Fr}}(\Delta(c,ar{h})) - extit{opt}(\mathcal{C}) + \epsilon \leq 2\epsilon \end{array}$$

ε -sample

Definition

An ε -sample for a range space (X, R), with respect to a probability distribution \mathcal{D} defined on X, is a subset $N \subseteq X$ such that, for any $r \in R$,

$$\left| \Pr_{\mathcal{D}}(r) - \frac{|N \cap r|}{|N|} \right| \leq \varepsilon$$
.

$\mathsf{Theorem}$

Let (X, \mathbb{R}) be a range space with VC dimension d and let \mathcal{D} be a probability distribution on X. For any $0 < \epsilon, \delta < 1/2$, there is an

$$m = O\left(\frac{d}{\epsilon^2} \ln \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\delta}\right)$$

such that a random sample from \mathcal{D} of size greater than or equal to \mathbf{m} is an ϵ -sample for \mathbf{X} with with probability at least $1-\delta$.

How to build an ε -sample?

Let N be a set of m independent samples from X according to D. Let

$$E_1 = \left\{ \exists r \in R \text{ s.t. } \left| \frac{|N \cap r|}{m} - \Pr(r) \right| > \varepsilon \right\}.$$

We want to show that $\Pr(E_1) \leq \delta$.

Choose another set T of m independent samples from X according to \mathcal{D} . Let

$$E_2 = \left\{ \exists r \in R \text{ s.t. } \left| \frac{|N \cap r|}{m} - \Pr(r) \right| > \varepsilon \ \land \ \left| \Pr(r) - \frac{|T \cap r|}{m} \right| \le \varepsilon/2 \right\}$$

Lemma

$$\Pr(E_2) \leq \Pr(E_1) \leq 2 \Pr(E_2).$$

Lemma

 $\Pr(E_2) \leq \Pr(E_1) \leq 2 \Pr(E_2).$

$$E_1 = \left\{ \exists r \in R \text{ s.t. } \left| \frac{|N \cap r|}{m} - \Pr(r) \right| > \varepsilon \right\}$$

$$E_2 = \left\{ \exists r \in R \text{ s.t. } \left| \frac{|N \cap r|}{m} - \Pr(r) \right| > \varepsilon \wedge \left| \frac{|T \cap r|}{m} - \Pr(r) \right| \le \varepsilon/2 \right\}$$

For
$$m \ge \frac{24}{\varepsilon^2}$$
,
$$\frac{\Pr(E_2)}{\Pr(E_1)} = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_1)} = \Pr(E_2|E_1) \ge \Pr(|\frac{|T \cap r|}{m} - \Pr(r)| \le \varepsilon/2)$$

 $> 1-2e^{-\varepsilon^2m/12} > 1/2$

[In bounding
$$\Pr(E_2|E_1)$$
 we use the fact that the probability that $\exists r \in R$ is not smaller than the probability that the event holds for a fixed r]

Instead of bounding the probability of

$$E_2 = \left\{ \exists r \in R \text{ s.t. } \left| \frac{|N \cap r|}{m} - \Pr(r) \right| > \varepsilon \wedge \left| \frac{|T \cap r|}{m} - \Pr(r) \right| \le \varepsilon/2 \right\}$$

we bound the probability of

$$E_2' = \{\exists r \in R \mid ||r \cap N| - |r \cap T|| \ge \frac{\epsilon}{2}m\}.$$

By the triangle inequality $(|A| + |B| \ge |A + B|)$:

$$||r \cap N| - |r \cap T|| + ||r \cap T| - m \Pr_{\mathcal{D}}(r)| \ge ||r \cap N| - m \Pr_{\mathcal{D}}(r)|.$$
or
$$||r \cap N| - |r \cap T|| \ge ||r \cap N| - m \Pr_{\mathcal{D}}(r)| - ||r \cap T| - m \Pr_{\mathcal{D}}(r)| \ge \frac{\epsilon}{2}m.$$

Since N and T are random samples, we can first choose a random sample Z of 2m elements, and partition it randomly into two sets of size m each. The event E_2' is in the probability space of random partitions of Z.

$$\Pr(E_1) \le 2\Pr(E_2) \le 2\Pr(E_2') \le 2(2m)^d e^{-\epsilon^2 m/8}$$
.

- Since N and T are random samples, we can first choose a random sample of 2m elements $Z = z_1, \ldots, z_{2m}$ and then partition it randomly into two sets of size m each.
- Since Z is a random sample, any partition that is independent
 of the actual values of the elements generates two random
 samples.
- We will use the following partition: for each pair of sampled items z_{2i-1} and z_{2i} , $i=1,\ldots,m$, with probability 1/2 (independent of other choices) we place z_{2i-1} in T and z_{2i} in N, otherwise we place z_{2i-1} in N and z_{2i} in T.

For $r \in R$, let E_r be the event

$$E_r = \left\{ ||r \cap N| - |r \cap T|| \ge \frac{\varepsilon}{2} m \right\}.$$

We have $E_2' = \{\exists r \in R \mid ||r \cap N| - |r \cap T|| \ge \frac{\epsilon}{2}m\} = \bigcup_{r \in R} E_r$.

- If $z_{2i-1}, z_{2i} \in r$ or $z_{2i-1}, z_{2i} \notin r$ they don't contribute to the value of $||r \cap N| |r \cap T||$.
- If just one of the pair z_{2i-1} and z_{2i} is in r then their contribution is +1 or -1 with equal probabilities.
- There are no more than m pairs that contribute +1 or -1 with equal probabilities. Applying the Chernoff bound we have

$$Pr(E_r) \le e^{-(\epsilon m/2)^2/2m} \le e^{-\epsilon^2 m/8}.$$

• Since the projection of X on $T \cup N$ has no more than $(2m)^d$ distinct sets we have the bound.

To complete the proof we show that for

$$m \geq \frac{32d}{\epsilon^2} \ln \frac{64d}{\epsilon^2} + \frac{16}{\epsilon^2} \ln \frac{1}{\delta}$$

we have

$$(2m)^d e^{-\epsilon^2 m/8} \le \delta.$$

Equivalently, we require

$$\epsilon^2 m/8 \ge \ln(1/\delta) + d\ln(2m).$$

Clearly $\epsilon^2 m/16 \geq \ln(1/\delta)$, since $m > \frac{16}{\epsilon^2} \ln \frac{1}{\delta}$.

To show that $\epsilon^2 m/16 \ge d \ln(2m)$ we use:

Lemma

If
$$y \ge x \ln x > e$$
, then $\frac{2y}{\ln x} \ge x$.

Proof.

For $y = x \ln x$ we have $\ln y = \ln x + \ln \ln x \le 2 \ln x$. Thus

$$\frac{2y}{\ln y} \ge \frac{2x \ln x}{2 \ln x} = x.$$

Differentiating $f(y) = \frac{\ln y}{2y}$ we find that f(y) is monotonically decreasing when $y \ge x \ln x \ge e$, and hence $\frac{2y}{\ln y}$ is monotonically increasing on the same interval, proving the lemma.

Let
$$y=2m\geq \frac{64d}{\epsilon^2}\ln\frac{64d}{\epsilon^2}$$
 and $x=\frac{64d}{\epsilon^2}$, we have $\frac{4m}{\ln(2m)}\geq \frac{64d}{\epsilon^2}$, so $\frac{\epsilon^2m}{16}\geq d\ln(2m)$ as required.

Application: Unrealizable (Agnostic) Learning

- We are given a training set $\{(x_1, c(x_1)), \dots, (x_m, c(x_m))\}$, and a concept class C
- No hypothesis in the concept class \mathcal{C} is consistent with all the training set $(c \notin \mathcal{C})$.
- Relaxed goal: Let c be the correct concept. Find $c' \in C$ such that

$$\Pr_{\mathcal{D}}(c'(x) \neq c(x)) \leq \inf_{h \in \mathcal{C}} \Pr_{\mathcal{D}}(h(x) \neq c(x)) + \epsilon.$$

• An $\epsilon/2$ -sample of the range space $(X, \Delta(c, c'))$ gives enough information to identify an hypothesis that is within ϵ of the best hypothesis in the concept class.

Uniform Convergence [Vapnik – Chervonenkis 1971]

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^m f(z_i) - E_{\mathcal{D}}[f]| \leq \epsilon) \geq 1 - \delta.$$

Let
$$f_E(z) = \mathbf{1}_{z \in E}$$
 then $\mathbf{E}[f_E(z)] = Pr(E)$.

Uniform Convergence

Definition

A range space (X, \mathcal{R}) has the uniform convergence property if for every $\epsilon, \delta > 0$ there is a sample size $m = m(\epsilon, \delta)$ such that for every distribution \mathcal{D} over X, if S is a random sample from \mathcal{D} of size m then, with probability at least $1 - \delta$, S is an ϵ -sample for X with respect to \mathcal{D} .

Theorem

The following three conditions are equivalent:

- **1** A concept class \mathcal{C} over a domain X is agnostic PAC learnable.
- 2 The range space (X, \mathcal{C}) has the uniform convergence property.
- **3** The range space (X, \mathcal{C}) has a finite VC dimension.

Uniform Convergence [Vapnik – Chervonenkis 1971]

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^m f(z_i) - E_{\mathcal{D}}[f]| \leq \epsilon) \geq 1 - \delta.$$

Let
$$f_E(z) = \mathbf{1}_{z \in E}$$
 then $\mathbf{E}[f_E(z)] = Pr(E)$.

Uniform Convergence and Learning

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^m f(z_i) - E_{\mathcal{D}}[f]| \leq \epsilon) \geq 1 - \delta.$$

- Let $\mathcal{F}_{\mathcal{H}} = \{f_h \mid h \in H\}$, where f_h is the loss function for hypothesis h.
- • F_H has the uniform convergence property ⇒ an ERM
 (Empirical Risk Minimization) algorithm "learns" H.
- The sample complexity of learning \mathcal{H} is bounded by $m_{\mathcal{F}_{\mathcal{U}}}(\epsilon, \delta)$

Some Background

- Let $f_x(z) = \mathbf{1}_{z \le x}$ (indicator function of the event $\{-\infty, x\}$)
- $F_m(x) = \frac{1}{m} \sum_{i=1}^m f_x(z_i)$ (empirical distributed function)
- Strong Law of Large Numbers: for a given x,

$$F_m(x) \rightarrow_{a.s} F(x) = Pr(z \leq x).$$

Glivenko-Cantelli Theorem:

$$\sup_{x\in\mathbf{R}}|F_m(x)-F(x)|\to_{a.s}0.$$

Dvoretzky-Keifer-Wolfowitz Inequality

$$Pr(\sup_{x\in\mathbf{R}}|F_m(x)-F(x)|\geq\epsilon)\leq 2e^{-2n\epsilon^2}.$$

 VC-dimension characterizes the uniform convergence property for arbitrary sets of events.

Application: Frequent Itemsets Mining (FIM)?

Frequent Itemsets Mining: classic data mining problem with many applications Settings:

Each line is a transaction, made of items from an

Dataset \mathcal{D}

milk, eggs

bread

alphabet *I*

An itemset is a subset of \mathcal{I} . E.g., the itemset bread, milk

{bread,milk} The frequency $f_{\mathcal{D}}(A)$ of $A \subseteq \mathcal{I}$ in \mathcal{D} is the fraction of

transactions bread, milk, apple of \mathcal{D} that A is a subset of. E.g., bread, milk, eggs

 $f_D(\{\text{bread,milk}\}) = 3/5 = 0.6$ Problem: Frequent Itemsets Mining (FIM)

Given $\theta \in [0, 1]$ find (i.e., mine) all itemsets $A \subseteq \mathcal{I}$ with

 $f_{\mathcal{D}}(A) > \theta$ I.e., compute the set $FI(\mathcal{D}, \theta) = \{A \subseteq \mathcal{I} : f_{\mathcal{D}}(A) \geq \theta\}$

There exist exact algorithms for FI mining (Apriori, FP-Growth,

How to make FI mining faster?

Exact algorithms for FI mining do not scale with $|\mathcal{D}|$ (no. of transactions):

They scan ${\mathcal D}$ multiple times: painfully slow when accessing disk or network

How to get faster? We could develop faster exact algorithms (difficult) or...

 \dots only mine random samples of \mathcal{D} that fit in main memory

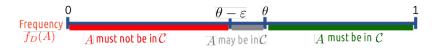
Trading off accuracy for speed: we get an approximation of $\mathsf{FI}(\mathcal{D},\theta)$ but we get it fast

Approximation is OK: FI mining is an exploratory task (the choice of θ is also often quite arbitrary)

Key question: How much to sample to get an approximation of given quality?

How to define an approximation of the FIs?

For $\varepsilon, \delta \in (0,1)$, a (ε, δ) -approximation to $\mathsf{FI}(\mathcal{D}, \theta)$ is a collection \mathcal{C} of itemsets s.t., with prob. $\geq 1 - \delta$:



"Close" False Positives are allowed, but no False Negatives This is the price to pay to get faster results: we lose accuracy

Still, \mathcal{C} can act as set of candidate FIs to prune with fast scan of \mathcal{D}

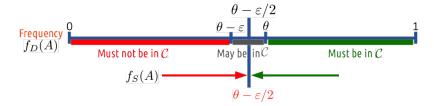
What do we really need?

We need a procedure that, given ε , δ , and \mathcal{D} , tells us how large should a sample \mathcal{S} of \mathcal{D} be so that

$$\Pr(\exists \text{ itemset } A : |f_{\mathcal{S}}(A) - f_{\mathcal{D}}(A)| > \varepsilon/2) < \delta$$

Theorem: When the above inequality holds, then $\mathsf{FI}(\mathcal{S}, \theta - \varepsilon/2)$ is an (ε, δ) -approximation

Proof (by picture):



What can we get with a Union Bound?

For any itemset A, the number of transactions that include A is distributed

$$|\mathcal{S}|f_{\mathcal{S}}(A) \sim Binomial(|\mathcal{S}|, f_{\mathcal{D}}(A))$$

Applying Chernoff bound

$$\Pr(|f_{\mathcal{S}}(A) - f_{\mathcal{D}}(A)| > \varepsilon/2) \le 2e^{-|\mathcal{S}|\varepsilon^2/12}$$

We then apply the union bound over all the itemsets to obtain uniform convergence

There are $2^{|\mathcal{I}|}$ itemsets, a priori. We need

$$2e^{-|\mathcal{S}|\varepsilon^2/12} < \delta/2^{|\mathcal{I}|}$$

Thus

$$|\mathcal{S}| \geq \frac{12}{\varepsilon^2} \left(|\mathcal{I}| + \ln 2 + \ln \frac{1}{\delta} \right)$$

Assume that we have a bound ℓ on the maximum transaction size.

There are $\sum_{i < \ell} \binom{|\mathcal{I}|}{i} \le |\mathcal{I}|^{\ell}$ possible itemsets. We need

$$2e^{-|\mathcal{S}|\varepsilon^2/12} \le \delta/|\mathcal{I}|^{\ell}$$

Thus,

$$|\mathcal{S}| \geq rac{12}{arepsilon^2} \left(\ell \log |\mathcal{I}| + \ln 2 + \ln rac{1}{\delta}
ight)$$

The sample size depends on $\log |\mathcal{I}|$ which can still be very large. E.g., all the products sold by Amazon, all the pages on the Web, ...

Can have a smaller sample size that depends on some characteristic quantity of \mathcal{D}

How do we get a smaller sample size?

[R. and U. 2014, 2015]: Let's use VC-dimension!

We define the task as an expectation estimation task:

- The domain is the dataset D (set of transactions)
- The family is $\mathcal{F} = \{\mathcal{T}_A, A \subseteq 2^{\mathcal{I}}\}$, where $\mathcal{T}_A = \{\tau \in \mathcal{D} : A \subseteq \tau\}$ is the set of the transactions of \mathcal{D} that contain A
- The distribution π is uniform over \mathcal{D} : $\pi(\tau) = 1/|\mathcal{D}|$, for each $\tau \in \mathcal{D}$

We sample transactions according to the uniform distribution, hence we have:

$$\mathbb{E}_{\pi}[\mathbb{1}_{\mathcal{T}_A}] = \sum_{\tau \in \mathcal{D}} \mathbb{1}_{\mathcal{T}_A}(\tau)\pi(\tau) = \sum_{\tau \in \mathcal{D}} \mathbb{1}_{\mathcal{T}_A}(\tau)\frac{1}{|\mathcal{D}|} = f_{\mathcal{D}}(A)$$

We then only need an efficient-to-compute upper bound to the VC-dimension

Bounding the VC-dimesion

Theorem: The VC-dimension is less or the maximum transaction size ℓ .

Proof:

- Let $t > \ell$ and assume it is possible to shatter a set $T \subseteq \mathcal{D}$ with |T| = t.
- Then any $\tau \in T$ appears in at least 2^{t-1} ranges \mathcal{T}_A (there are 2^{t-1} subsets of T containing τ)
- Any τ only appears in the ranges \mathcal{T}_A such that $A \subseteq \tau$. So it appears in $2^{\ell} 1$ ranges
- But $2^{\ell} 1 < 2^{t-1}$ so τ^* can not appear in 2^{t-1} ranges
- Then T can not be shattered. We reach a contradiction and the thesis is true

By the VC ε -sample theorem we need $|S| \geq O(\frac{1}{\varepsilon^2} \left(\ell \log \ell + \ln \frac{1}{\delta}\right))$

Better bound for the VC-dimension

Enters the d-index of a dataset \mathcal{D} !

The d-index d of a dataset \mathcal{D} is the maximum integer such that \mathcal{D} contains at least d different transactions of length at least d

Example: The following dataset has d-index 3

bread	beer	milk	coffee
chips	coke	pasta	
bread	coke	chips	
milk	coffee		
pasta	milk		

It is similar but not equal to the h-index for published authors

It can be computed easily with a single scan of the dataset

Theorem: The VC-dimension is less or equal to the d-index d of \mathcal{D}

How do we prove the bound?

Theorem: The VC-dimension is less or equal to the d-index d of \mathcal{D} Proof:

- Let ℓ > d and assume it is possible to shatter a set T ⊆ D with |T| = ℓ.
- Then any $\tau \in T$ appears in at least $2^{\ell-1}$ ranges T_A (there are $2^{\ell-1}$ subsets of T containing τ)
- But any τ only appears in the ranges \mathcal{T}_A such that $A \subseteq \tau$. So it appears in $2^{|\tau|} 1$ ranges
- From the definition of d, T must contain a transaction τ^* of length $|\tau^*| < \ell$
- This implies $2^{|\tau^*|}-1<2^{\ell-1}$, so τ^* can not appear in $2^{\ell-1}$ ranges
- Then T can not be shattered. We reach a contradiction and the thesis is true

This theorem allows us to use the VC ε -sample theorem

What is the algorithm then?

```
d \leftarrow d-index of \mathcal{D}
r \leftarrow \frac{1}{c^2} \left( d + \ln \frac{1}{\delta} \right)
sample size
\mathcal{S} \leftarrow \emptyset
for i \leftarrow 1, \ldots, r do
     \tau_i \leftarrow \text{random transaction from } \mathcal{D}, \text{ chosen uniformly } \mathcal{S} \leftarrow \mathcal{S} \cup \{\tau_i\}
end
Compute FI(S, \theta - \varepsilon/2) using exact algorithm // Faster algos
  make our approach faster!
Output FI(S, \theta - \varepsilon/2)
```

Theorem: The output of the algorithm is a (ε, δ) -approximation We just proved it!

How does it perform in practice?

Very well!

Great speedup w.r.t. an exact algorithm mining the whole dataset Gets better as \mathcal{D} grows, because the sample size does not depend on $|\mathcal{D}|$

Sample is small: 10^5 transactions for $\varepsilon = 0.01$, $\delta = 0.1$

The output always had the desired properties, not just with prob.

 $1 - \delta$

Maximum error $|f_{\mathcal{S}}(A) - f_{\mathcal{D}}(A)|$ much smaller than ε

