Quenched Voronoi percolation

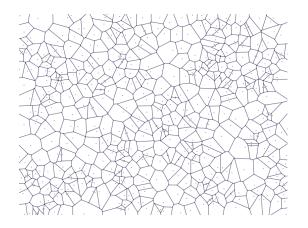
Daniel Ahlberg

IMPA, Rio de Janeiro Uppsala University

Joint work with Simon Griffiths, Rob Morris, and Vincent Tassion

The problem

- Position *n* points in the unit square uniformly at random.
- Consider the Voronoi tessellation of $\eta = \{x_1, x_2, \dots, x_n\}$.



The problem

- Position n points in the unit square uniformly at random.
- Consider the Voronoi tessellation of $\eta = \{x_1, x_2, \dots, x_n\}$.
- Toss a fair coin, once for each cell, to determine its colour.

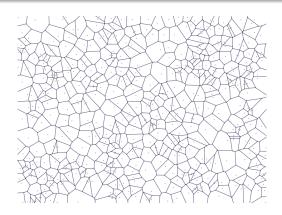
$$\mathbb{P}\left(\begin{array}{|c|c|} \hline \end{array}\right) = 1/2$$
 by symmetry.

Benjamini, Kalai and Schramm conjectured in 1999 that

$$\mathbb{P}\left(\left\lceil \frac{1}{n} \right\rceil \right) o 1/2 \quad \text{as } n o \infty.$$

Theorem (A-Griffiths-Morris-Tassion '15+)

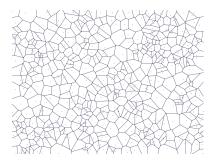
$$\forall \varepsilon > 0 \quad \mathbb{P}\left(\left|\mathbb{P}\left(\; \bigsqcup \; \middle|\; \eta\right) - 1/2 \right| > \varepsilon\right) \to 0 \quad \text{as } n \to \infty.$$



The density invariance conjecture

Conjecture (Benjamini-Schramm '98)

Let μ be some measure on the unit square comparable to Lebesgue measure. Place n points in the unit square according to μ . Then the limit



Sensitivity to small perturbations

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$

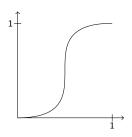
Question: Can we tell the outcome of $f(\omega)$ by observing a slight perturbation ω^{ε} of ω ?

Examples:

Dictatorship (yes), Majority (yes), Percolation crossings (no).

Why fair coin flips?

Many monotone Boolean functions present sharp thresholds.



Plot of the probability of success

$$\mathbb{P}_p(f=1)$$

as a function of the bias p of the coin.

When sharp thresholds?

Monotone Boolean functions which do not depend on 'few' variables have sharp thresholds. Sharp thresholds occur when influences are 'small'.

Russo's formula:
$$\frac{d}{dp}\mathbb{P}_p(f=1) = \sum_{i=1}^n \mathrm{Inf}_i^p(f).$$

The **influence** of bit $i \in \{1, 2, \dots, n\}$ for $f : \{0, 1\}^n \to \{0, 1\}$ is

$$\mathsf{Inf}_i(f) := \mathbb{P}\big(f(\omega) \neq f(\sigma_i\omega)\big),$$

where $\sigma_i \omega$ is obtained from ω by flipping the value at position i.

Noise sensitivity of Boolean functions

Let ω^{ε} be obtained from $\omega \in \{0,1\}^n$ by flipping each bit with probab ε .

A sequence $(f_n)_{n\geq 1}$ of functions $f_n:\{0,1\}^n\to\{0,1\}$ is **noise sensitive** if $\forall \varepsilon>0 \quad \mathbb{E}[f_n(\omega)f_n(\omega^\varepsilon)]-\mathbb{E}[f_n(\omega)]^2\to 0 \quad \text{as } n\to\infty.$

Theorem (Benjamini-Kalai-Schramm '99)

$$\sum_{i=1}^n \mathsf{Inf}_i(f_n)^2 \to 0 \quad \Rightarrow \quad (f_n)_{n \ge 1} \text{ is noise sensitive}.$$

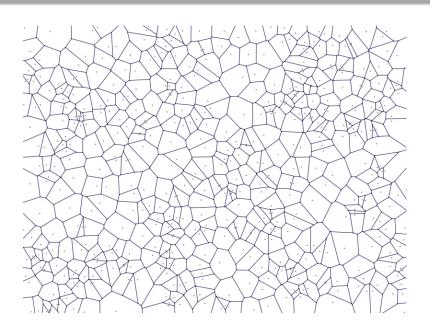
Previous work

Benjamini-Kalai-Schramm '99: The BKS-theorem, the 'algorithm method', bond percolation crossings are noise sensitive.

Schramm-Steif '10: Quantitative noise sensitivity and existence of exceptional times for dynamical percolation on the hexagonal lattice.

Garban-Pete-Schramm '10: Fourier spectrum for percolation crossings and existence of exceptional times for the square lattice.

A-Broman-Griffiths-Morris '14: Crossings in continuum percolation are noise sensitive.



Proof outline - Step 1

We will attempt a **martingale approach**, revealing the position of one point at the time, and estimating its effect on the crossing probability.

Let $\eta = \{x_1, x_2, \dots, x_n\}$ be given. Then,

- $(X_k)_{k=1}^n$ with $X_k = \mathbb{P}\big(\bigcap \big| \{x_1, x_2, \dots, x_k\} \big)$ is a martingale.

Proposition

$$\operatorname{Var}\left(\mathbb{P}\left(\left. \left| \eta \right| \right)\right) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Inf}_{i}(f_{\eta})^{2}\right]$$

Step 2 – The algorithm method

$$\mathsf{Inf}_i(f_\eta) = \mathbb{P}\left(\left.igcup_{\eta}\right|\eta
ight) \leq \mathbb{P}\left(\left.igcup_{\eta}\right|\eta
ight)$$

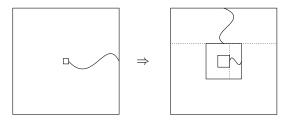
Four-arm probabilities are hard to estimate. One-arm probabilities are easier, but give too weak bounds.

The **algorithm method** will allow us to obtain a bound on the influences by estimating the **revealment** on an algorithm determining f_{η} .

An exploration algorithm may be used, and an upper bound on the revealment is obtained by the **one-arm event**.

Step 2 – One-arm estimate

The probability of the one-arm event can be estimated by the existence of dual circuits in annuli.



It will suffice to estimate probabilities of the form $\mathbb{P}(\boxed{|\eta|}.$

Step 3 – Crossing probabilities

Proposition

$$\mathbb{P}\Big(\mathbb{P}\big(\boxed{} |\eta\big) \leq 1/2^k\Big) \leq (1-c)^k \quad \textit{for large } k.$$

This shows that mass of $\mathbb{P}(| \eta)$ does not accumulate at 0 or 1.

Step 3 – Proof of Proposition

- $\mathbb{P}() > c_0$, by Tassion '14+.
- Let X denote the maximal number of vertex disjoint monochromatic vertical crossings. Then, using colour-switching,

$$\mathbb{P}\big(\left[\right] | \eta\big) = \sum_{k=1}^{\infty} (1/2)^k \, \mathbb{P}(X = k | \eta) = \mathbb{E}\big[2^{-X} | \eta\big].$$

• $\mathbb{P}(X \ge k) \le \frac{1}{2}(1-c)^k$, using FKG- and BK-inequalities.

$$\mathbb{P}\Big(\mathbb{P}\big(\boxed{ ||\eta\big)} \leq 1/2^k\Big) \leq \mathbb{P}\big(\mathbb{P}(X \geq k|\eta) \geq 1/2\big) \leq (1-c)^k.$$

Proof summary

- **Step 1** Martingale approach to obtain a variance-influence relation.
- **Step 2** The algorithm method and one-arm estimate.
- **Step 3** First bound on quenched crossing probabilities.
- Step 4 Deal with boundary issues!