Extremal Processes of Gaussian Processes Indexed by Trees

Anton Bovier with Louis-Pierre Arguin, Lisa Hartung, Nicola Kistler

Institute for Applied Mathematics Bonn

Disordered Models of Mathematical Physics, Valparaíso, July, 2015

hausdorff center for mathematics

• **Spin glasses:** What is the structure of ground states for (mean field) spin glasses?

- **Spin glasses:** What is the structure of ground states for (mean field) spin glasses?
- Extreme value theory: What are the extreme values and the extremal process of dependent random processes?

A. Bovier (IAM Bonn)

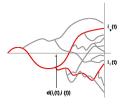
- **Spin glasses:** What is the structure of ground states for (mean field) spin glasses?
- Extreme value theory: What are the extreme values and the extremal process of dependent random processes?
- Spatial branching processes: Describe the cloud of spatial branching processes, in particular near their propagation front!

- **Spin glasses:** What is the structure of ground states for (mean field) spin glasses?
- Extreme value theory: What are the extreme values and the extremal process of dependent random processes?
- Spatial branching processes: Describe the cloud of spatial branching processes, in particular near their propagation front!
- Reaction diffusion equations: Characterise convergence to travelling wave solutions in certain non-linear pdes!

- **Spin glasses:** What is the structure of ground states for (mean field) spin glasses?
- Extreme value theory: What are the extreme values and the extremal process of dependent random processes?
- Spatial branching processes: Describe the cloud of spatial branching processes, in particular near their propagation front!
- Reaction diffusion equations: Characterise convergence to travelling wave solutions in certain non-linear pdes!

• A time-homogeneous tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$.

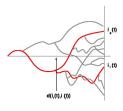
- A time-homogeneous tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$.
- Canonical tree-distance: $d(\mathbf{i}_{\ell}(t), \mathbf{i}_{k}(t)) \equiv \text{time of most recent common ancestor of } \mathbf{i}_{\ell}(t) \text{ and } \mathbf{i}_{k}(t)$

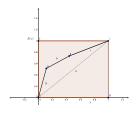


- A time-homogeneous tree. Label individuals at time t as $\mathbf{i}_1(t), \dots, \mathbf{i}_{n(t)}(t)$.
- Canonical tree-distance: $d(\mathbf{i}_{\ell}(t), \mathbf{i}_{k}(t)) \equiv \text{time of most recent}$ common ancestor of $\mathbf{i}_{\ell}(t)$ and $\mathbf{i}_{k}(t)$
- For fixed time horizon t, define Gaussian process, $(x_k^t(s), k \le n(t), s \le t)$, with covariance

$$\mathbb{E} x_k^t(r) x_\ell^t(s) = t A(t^{-1} d(\mathbf{i}_k(r), \mathbf{i}_\ell(s)))$$

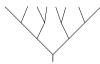
for $A: [0,1] \rightarrow [0,1]$, increasing.





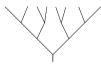
hausdorff center for mathematics

Binary tree, branching at integer times



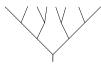
Binary tree, branching at integer times

• A(x) = x: Branching random walk [Harris '63]



Binary tree, branching at integer times

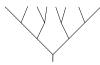
- A(x) = x: Branching random walk [Harris '63]
- A step function: Generalised Random Energy models (GREM) [Gardner-Derrida '82]



Binary tree, branching at integer times

- A(x) = x: Branching random walk [Harris '63]
- A step function: Generalised Random Energy models (GREM)
 [Gardner-Derrida '82]
- Special case A(x) = 0, x < 1, A(1) = 1: Random energy model (REM), i.e. n(t) iid $\mathcal{N}(0,t)$ r.v.s

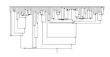
A. Bovier (IAM Bonn)

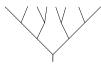


Binary tree, branching at integer times

- A(x) = x: Branching random walk [Harris '63]
- A step function: Generalised Random Energy models (GREM)
 [Gardner-Derrida '82]
- Special case A(x) = 0, x < 1, A(1) = 1: Random energy model (REM), i.e. n(t) iid $\mathcal{N}(0,t)$ r.v.s

Supercritical Galton-Watson tree



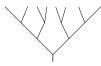


Binary tree, branching at integer times

- A(x) = x: Branching random walk [Harris '63]
- A step function: Generalised Random Energy models (GREM)
 [Gardner-Derrida '82]
- Special case A(x) = 0, x < 1, A(1) = 1: Random energy model (REM), i.e. n(t) iid $\mathcal{N}(0,t)$ r.v.s

Supercritical Galton-Watson tree

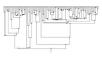
• A(x) = x: Branching Brownian motion (BBM) [Moyal '62]



Binary tree, branching at integer times

- A(x) = x: Branching random walk [Harris '63]
- A step function: Generalised Random Energy models (GREM)
 [Gardner-Derrida '82]
- Special case A(x) = 0, x < 1, A(1) = 1: Random energy model (REM), i.e. n(t) iid $\mathcal{N}(0,t)$ r.v.s

Supercritical Galton-Watson tree



- A(x) = x: Branching Brownian motion (BBM) [Moyal '62]
- General A: variable speed BBM [Derrida-Spohn '88, Fang-Zeitouni '12]

In the class of models we have described, we are interested in three main questions:

A. Bovier (IAM Bonn)

In the class of models we have described, we are interested in three main questions:

• How big is $M(t)/t \equiv \max_{k \le n(t)} x_k(t)/t$, as $t \uparrow \infty$?

In the class of models we have described, we are interested in three main questions:

- How big is $M(t)/t \equiv \max_{k \le n(t)} x_k(t)/t$, as $t \uparrow \infty$?
- Is there a rescaling $u_t(x)$, such that

$$\mathbb{P}\left(M(t) \leq u_t(x)\right) \to F(x)$$
?

In the class of models we have described, we are interested in three main questions:

- How big is $M(t)/t \equiv \max_{k \le n(t)} x_k(t)/t$, as $t \uparrow \infty$?
- Is there a rescaling $u_t(x)$, such that

$$\mathbb{P}\left(M(t) \leq u_t(x)\right) \to F(x)$$
?

• Is there a limiting extremal process, \mathcal{P} , such that

$$\sum_{k \le n(t)} \delta_{u_t^{-1}(x_k(t))} \to \mathcal{P}?$$

If $x_k(t)$ are just n(t) iid Gaussian rv's with variance t:

If $x_k(t)$ are just n(t) iid Gaussian rv's with variance t:

•
$$M(t)/t \rightarrow \sqrt{2 \lim_{t \uparrow \infty} t^{-1} \ln n(t)} \equiv \sqrt{2r}$$

If $x_k(t)$ are just n(t) iid Gaussian rv's with variance t:

•
$$M(t)/t \rightarrow \sqrt{2 \lim_{t \uparrow \infty} t^{-1} \ln n(t)} \equiv \sqrt{2r}$$

With
$$u_t(x) = t\sqrt{2r} - \frac{\ln(rt)}{2\sqrt{2r}} + \frac{x}{\sqrt{r}} + \frac{\ln(n(t)/\mathbb{E}n(t))}{\sqrt{2r}}$$
, where $n(t)/\mathbb{E}n(t) \to RV$, a.s.

•

$$\mathbb{P}\left(M(t) \leq u_t(x)\right) o \exp\left(-rac{1}{4\pi}e^{-\sqrt{2}x}
ight)$$

•

•

If $x_k(t)$ are just n(t) iid Gaussian rv's with variance t:

•
$$M(t)/t \rightarrow \sqrt{2 \lim_{t \uparrow \infty} t^{-1} \ln n(t)} \equiv \sqrt{2r}$$

With
$$u_t(x) = t\sqrt{2r} - \frac{\ln(rt)}{2\sqrt{2r}} + \frac{x}{\sqrt{r}} + \frac{\ln(n(t)/\mathbb{E}n(t))}{\sqrt{2r}}$$
, where $n(t)/\mathbb{E}n(t) \to RV$, a.s.

$$\mathbb{P}(M(t) \le u_t(x)) \to \exp\left(-\frac{1}{4\pi}e^{-\sqrt{2}x}\right)$$

$$\sum_{k \le n(t)} \delta_{u_t^{-1}(x_k(t))} \to \mathsf{PPP}(\tfrac{1}{4\pi} e^{-\sqrt{2}x} dx)$$

where $PPP(\mu)$ denotes the Poisson Point Process with intensity μ .

housdorff center for mothematics

In all models, it has been shown (or can be shown easily) that the order of the maximum is only a function of the concave hull of the function A (and on the growth rate of n(t)):

In all models, it has been shown (or can be shown easily) that the order of the maximum is only a function of the concave hull of the function A (and on the growth rate of n(t)):

If \bar{A} denotes the concave hull of A, then :

$$\lim_{t\to\infty} t^{-1}M(t) = \sqrt{2\lim_{t\to\infty} t^{-1}\ln n(t)} \int_0^1 \sqrt{\frac{d}{ds}}\bar{A}(s)ds$$

[B-Kurkova 01, for binary tree, Fang-Zeitouni 11, GW tree]

In all models, it has been shown (or can be shown easily) that the order of the maximum is only a function of the concave hull of the function A (and on the growth rate of n(t)):

If \bar{A} denotes the concave hull of A, then :

$$\lim_{t\to\infty} t^{-1}M(t) = \sqrt{2\lim_{t\to\infty} t^{-1}\ln n(t)} \int_0^1 \sqrt{\frac{d}{ds}} \bar{A}(s)ds$$

[B-Kurkova 01, for binary tree, Fang-Zeitouni 11, GW tree]

Note in particular that as long as $A(s) \le s$, for all $s \le 1$, then $\bar{A}(s) = s$, and the order of the maximum is the same as in the REM.

The GREM

The GREM

The full picture is known (or easy to get) if *A* is a step function. In that case:

The GREM

The full picture is known (or easy to get) if *A* is a step function. In that case:

• If A(s) < s, for all $s \in (0,1)$, then all results are the same as in the corresponding REM!

The full picture is known (or easy to get) if A is a step function. In that case:

- If A(s) < s, for all $s \in (0,1)$, then all results are the same as in the corresponding REM!
- If $A(s) \le s$, with equality in a finite number of points, the REM picture holds, but a prefactor appears in front of the e^{-x} 's.

The full picture is known (or easy to get) if *A* is a step function. In that case:

- If A(s) < s, for all $s \in (0,1)$, then all results are the same as in the corresponding REM!
- If $A(s) \le s$, with equality in a finite number of points, the REM picture holds, but a prefactor appears in front of the e^{-x} 's.
- If $\bar{A}(s) \neq s$, then the leading order and the logarithmic correction are changed and depend on \bar{A} ; the extremal process is a Poisson cascade process.

The full picture is known (or easy to get) if *A* is a step function. In that case:

- If A(s) < s, for all $s \in (0,1)$, then all results are the same as in the corresponding REM!
- If $A(s) \le s$, with equality in a finite number of points, the REM picture holds, but a prefactor appears in front of the e^{-x} 's.
- If $\bar{A}(s) \neq s$, then the leading order and the logarithmic correction are changed and depend on \bar{A} ; the extremal process is a Poisson cascade process.

This is all proven for the binary tree, but extension to general trees are straightforward.

The full picture is known (or easy to get) if *A* is a step function. In that case:

- If A(s) < s, for all $s \in (0,1)$, then all results are the same as in the corresponding REM!
- If $A(s) \le s$, with equality in a finite number of points, the REM picture holds, but a prefactor appears in front of the e^{-x} 's.
- If $\bar{A}(s) \neq s$, then the leading order and the logarithmic correction are changed and depend on \bar{A} ; the extremal process is a Poisson cascade process.

This is all proven for the binary tree, but extension to general trees are straightforward.

Note the special role of the linear function A(s) = s

Branching Brownian motion

(BBM) is a classical object in probability, combining the standard models of random motion and random genealogies into one: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.

Branching Brownian motion

(BBM) is a classical object in probability, combining the standard models of random motion and random genealogies into one: Each particle of the Galton-Watson process performs Brownian motion independently of any other. This produces an immersion of the Galton-Watson process in space.

Picture by Matt Roberts, Bath

BBM is the canonical model of a spatial branching process.

The F-KPP equation

A. Bovier (IAM Bonn)

The F-KPP equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

The F-KPP equation

One of the simplest reaction-diffusion equations is the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$\partial_t v(x,t) = \frac{1}{2} \partial_x^2 v(x,t) + v - v^2$$

Fischer used this equation to model the evolution of biological populations. It accounts for:

- birth: v,
- death: $-v^2$,
- diffusive migration: $\partial_x^2 v$.

F-KPP equation and BBM

Lemma (McKeane '75, Ikeda, Nagasawa, Watanabe '69)

Let $f : \mathbb{R} \to [0,1]$ and $\{x_k(t) : k \le n(t)\}$ BBM.

$$u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} f(x - x_k(t))\right]$$

Then $v \equiv 1 - u$ is the solution of the F-KPP equation with initial condition v(0, x) = 1 - f(x).

Travelling waves

Theorem (KPP '37,....., Bramson '78)

The equation

$$\frac{1}{2}\omega'' + \sqrt{2}\omega' - \omega^2 + \omega = 0.$$

has a unique solution satisfying $0 < \omega(x) < 1$, $\omega(x) \to 0$, as $x \to +\infty$, and $\omega(x) \to 1$, as $x \to -\infty$, up to translation.

Theorem (KPP '37,....., Bramson '78)

The equation

$$\frac{1}{2}\omega'' + \sqrt{2}\omega' - \omega^2 + \omega = 0.$$

has a unique solution satisfying $0 < \omega(x) < 1$, $\omega(x) \to 0$, as $x \to +\infty$, and $\omega(x) \to 1$, as $x \to -\infty$, up to translation. For suitable initial conditions.

$$u(t, x + m(t)) \rightarrow \omega(x),$$

where $m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}} \ln t$, where ω is one of the stationary solutions.

Choosing suitable initial conditions, this theorem applies to

Choosing suitable initial conditions, this theorem applies to

•
$$u(t,x) = \mathbb{P}(\max_{k \le n(t)} x_k(t) \le x)$$
.

Choosing suitable initial conditions, this theorem applies to

•
$$u(t,x) = \mathbb{P}(\max_{k \le n(t)} x_k(t) \le x)$$
.

This gives Bramson's celebrated result

$$\lim_{t\to\infty} \mathbb{P}(\max_{k\leq n(t)} x_k(t) - m(t) \leq x) = \omega(x)$$

Choosing suitable initial conditions, this theorem applies to

•
$$u(t,x) = \mathbb{P}(\max_{k \leq n(t)} x_k(t) \leq x)$$
.

This gives Bramson's celebrated result

$$\lim_{t\to\infty} \mathbb{P}(\max_{k\leq n(t)} x_k(t) - m(t) \leq x) = \omega(x)$$

and

• the Laplace functional $u(t,x) = \mathbb{E} \exp(-\sum_{k \le n(t)} \phi(x_k(t)))$ Allows to characterise the extremal process...

The derivative martingale

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-CZ}e^{-\sqrt{2}x}\right]$$

The derivative martingale

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-C\mathbf{Z}e^{-\sqrt{2}x}}\right]$$

 $Z \stackrel{(d)}{=} \lim_{t \to \infty} Z(t)$, where Z(t) is the derivative martingale,

$$Z(t) = \sum_{k < n(t)} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t - x_k(t)\}}$$

The derivative martingale

Lalley-Sellke, 1987: $\omega(x)$ is random shift of Gumbel-distribution

$$\omega(x) = \mathbb{E}\left[e^{-C\mathbf{Z}e^{-\sqrt{2}x}}\right]$$

 $Z \stackrel{(d)}{=} \lim_{t \to \infty} Z(t)$, where Z(t) is the derivative martingale,

$$Z(t) = \sum_{k < n(t)} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t - x_k(t)\}}$$

Poisson Point Process:
$$\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \mathsf{PPP}\left(\mathit{CZ}\mathrm{e}^{-\sqrt{2}x}\mathit{dx}\right)$$

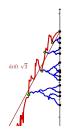
Poisson Point Process: $\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \mathsf{PPP}\left(\mathit{CZe}^{-\sqrt{2}x} \mathit{dx}\right)$

Cluster process:

$$\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \leq n(t)} x_j(t)}.$$

conditioned on the event $\left\{\max_{j\leq n(t)} x_j(t) > \sqrt{2}t\right\}$ converges in law to point process, Δ .

[Chauvin, Rouault '90]



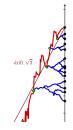
Poisson Point Process: $\mathcal{P}_Z = \sum_{i \in \mathbb{N}} \delta_{p_i} \equiv \mathsf{PPP}\left(\mathit{CZe}^{-\sqrt{2}x} \mathit{dx}\right)$

Cluster process:

$$\Delta(t) \equiv \sum_k \delta_{x_k(t) - \max_{j \leq n(t)} x_j(t)}.$$

conditioned on the event $\left\{\max_{j\leq n(t)} x_j(t) > \sqrt{2}t\right\}$ converges in law to point process, Δ .

[Chauvin, Rouault '90]



$$\mathcal{E} \equiv \sum_{i, i \in \mathbb{N}} \delta_{m{p}_i + \Delta_j^{(i)}}, \qquad \Delta^{(i)} ext{ iid copies of } \Delta$$

hausdorff center for mathematics

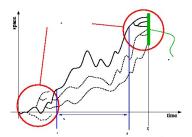
A. Bovier (IAM Bonn)

Theorem (Arguin-B-Kistler '11, Aidékon, Brunet, Berestycki, Shi '11)

The point process $\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)} \to \mathcal{E}$.

Theorem (Arguin-B-Kistler '11, Aidékon, Brunet, Berestycki, Shi '11)

The point process $\mathcal{E}_t \equiv \sum_{i=1}^{n(t)} \delta_{x_i(t)-m(t)} \to \mathcal{E}$.



Interpretation:

 p_i : positions of maxima of clusters with recent common ancestors.

 $\Delta^{(i)}$: positions of members of clusters seen from their maximal one

housdorff center for mothemotics

A. Bovier (IAM Bonn)

Technically, proven by showing convergence of Laplace functionals:

A. Bovier (IAM Bonn)

Technically, proven by showing convergence of Laplace functionals:

$$\mathbb{E}\left[\exp\left(-\int\phi(y)\mathcal{E}_t(dy)\right)\right]\to\mathbb{E}\left[\exp\left(-C(\phi)Z\right)\right]$$

for any $\phi \in \mathcal{C}_c(\mathbb{R})$ non-negative, where

$$C(\phi) = \lim_{t \to \infty} \sqrt{\frac{2}{\pi}} \int_0^{\infty} \left(1 - u(t, y + \sqrt{2}t) \right) y e^{\sqrt{2}y} dy$$

u(t,y): solution of F-KPP with initial condition $u(0,y) = e^{-\phi(y)}$.

Technically, proven by showing convergence of Laplace functionals:

$$\mathbb{E}\left[\exp\left(-\int\phi(y)\mathcal{E}_t(dy)\right)\right]\to\mathbb{E}\left[\exp\left(-C(\phi)Z\right)\right]$$

for any $\phi \in \mathcal{C}_c(\mathbb{R})$ non-negative, where

$$C(\phi) = \lim_{t \to \infty} \sqrt{\frac{2}{\pi}} \int_0^{\infty} \left(1 - u(t, y + \sqrt{2}t) \right) y e^{\sqrt{2}y} dy$$

u(t,y): solution of F-KPP with initial condition $u(0,y) = e^{-\phi(y)}$.

Then show that the limit is the Laplace functional of the process \mathcal{E} described above.

Variable speed BBM.....below the straight line...

A. Bovier (IAM Bonn)

Variable speed BBM.....below the straight line...

Assume that
$$A(x) < x, \forall x \in (0,1)$$
, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$.

Variable speed BBM.....below the straight line...

Assume that $A(x) < x, \forall x \in (0,1)$, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$. Then $\exists C(b)$ and a r.v. Y_a such that

Theorem (B-Hartung '13,'14)

Assume that $A(x) < x, \forall x \in (0,1)$, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$. Then $\exists C(b)$ and a r.v. Y_a such that

• $\mathbb{P}(M(t) - \tilde{m}(t) \leq x) \rightarrow \mathbb{E}e^{-C(b)Y_ae^{-\sqrt{2}x}}$

Variable speed BBM.....below the straight line...

Theorem (B-Hartung '13,'14)

Assume that $A(x) < x, \forall x \in (0,1)$, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$. Then $\exists C(b)$ and a r.v. Y_a such that

- $\mathbb{P}(M(t) \tilde{m}(t) \leq x) \rightarrow \mathbb{E}e^{-C(b)Y_ae^{-\sqrt{2}x}}$
- $\sum_{k \leq n(t)} \delta_{x_k(t) \tilde{m}(t)} \to \mathcal{E}_{a,b} = \sum_{i,j} \delta_{p_i + b\Delta_i^{(i)}}$

Theorem (B-Hartung '13,'14)

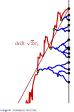
Assume that $A(x) < x, \forall x \in (0,1)$, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$. Then $\exists C(b)$ and a r.v. Y_a such that

- $\mathbb{P}\left(M(t) \tilde{m}(t) \leq x\right) \to \mathbb{E}e^{-C(b)Y_ae^{-\sqrt{2}x}}$
- $\sum_{k \leq n(t)} \delta_{x_k(t) \tilde{m}(t)} \to \mathcal{E}_{a,b} = \sum_{i,j} \delta_{p_i + b\Delta_j^{(i)}}$
- $\tilde{m}(t) \equiv \sqrt{2}t \frac{1}{2\sqrt{2}} \ln t.$
- p_i : e the atoms of a PPP($C(b)Y_ae^{-\sqrt{2x}}dx$),
- $Y_s \equiv \sum_{i=1}^{n(s)} e^{-s(1+\sigma_1^2)+\sqrt{2}x_i(s)}$

Theorem (B-Hartung '13,'14)

Assume that $A(x) < x, \forall x \in (0,1)$, $A'(0) = a^2 < 1$, $A'(1) = b^2 > 1$. Then $\exists C(b)$ and a r.v. Y_a such that

- $\mathbb{P}(M(t) \tilde{m}(t) \leq x) \rightarrow \mathbb{E}e^{-C(b)Y_ae^{-\sqrt{2}x}}$
- $\sum_{k \leq n(t)} \delta_{x_k(t) \tilde{m}(t)} \to \mathcal{E}_{a,b} = \sum_{i,j} \delta_{p_i + b\Delta_j^{(i)}}$
- $\tilde{m}(t) \equiv \sqrt{2}t \frac{1}{2\sqrt{2}} \ln t.$
- p_i : e the atoms of a PPP($C(b)Y_ae^{-\sqrt{2x}}dx$),
- $Y_s \equiv \sum_{i=1}^{n(s)} e^{-s(1+\sigma_1^2)+\sqrt{2}x_i(s)}$
- Δ : are as in BBM but with the conditioning on the event $\{\max_k x_k(t) \ge \sqrt{2}bt\}$.



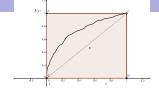
hausdorff center for mathematics

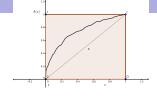
Elements of the proof:

Elements of the proof:

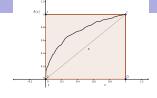
- 1) Explicit construction for the case of two speeds:
- 2) Gaussian comparison for general A.

A. Bovier (IAM Bonn)



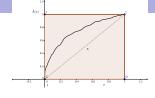


When the concave hull of A is above the straight line, everything changes.



When the concave hull of A is above the straight line, everything changes.

• If A is piecewise linear, it is quite easy to get the full picture: Cascade of BBM processes.



When the concave hull of A is above the straight line, everything changes.

- If *A* is piecewise linear, it is quite easy to get the full picture: Cascade of BBM processes.
- If A is strictly concave, Fang and Zeitouni '12 and Maillard and Zeitouni '13 have shown that the correct rescaling is

$$m(t) = C_{\sigma}t - D_{\sigma}t^{1/3} - \sigma^{2}(1) \ln t + f_{t}$$

(with explicit constants C_{σ} and D_{σ}), and $|f_t|$ bounded and

$$\mathbb{P}\left[M_T - m(t) \leq x\right] \to \phi(x/\sigma(0)),$$

and ϕ a traveling wave solution to the F-KPP equation.

Adding an extra dimension...

The following is inspired by an analogous result conjectured for the Gaussian free field by Biskup and Louidor.

Adding an extra dimension...

The following is inspired by an analogous result conjectured for the Gaussian free field by Biskup and Louidor.

Chose an embedding $\gamma:\{1,\ldots,\mathit{n}(t)\} o\mathbb{R}_+$, such that

$$|(\gamma(i_k(t)) - \gamma(i_j(t))| \sim e^{-d(i_k(t),i_j(t))}$$

Define for $u \in \mathbb{R}_+$, r < t,

$$Z(r,t,u) \equiv \sum_{k: \gamma(i_k(r)) \le u} \{\sqrt{2}t - x_k(t)\} e^{-\sqrt{2}\{\sqrt{2}t - x_k(t)\}}.$$

Then

$$\lim_{r \uparrow \infty} \lim_{t \uparrow \infty} Z(r, t, u) \to Z(u)$$

Full convergence

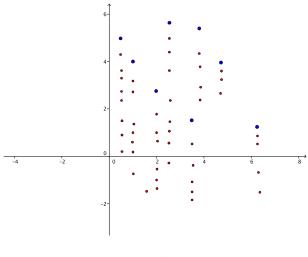
Theorem (B, Hartung '14)

The point process $\mathcal{E}_t \equiv \sum_{k=1}^{n(t)} \delta_{(\gamma(i_k(t)), x_i(t) - m(t))} \to \widetilde{\mathcal{E}}$ on $\mathbb{R}_+ \times \mathbb{R}$, where

$$\widetilde{\mathcal{E}} \equiv \sum_{i,j} \delta_{(q_i,p_i)+(0,\Delta_j^{(i)})},$$

with (q_i, p_i) atoms of a Cox process on $\mathbb{R}_+ \times \mathbb{R}$ with intensity measure $Z(du) \times Ce^{-\sqrt{2}x} dx$, and $\Delta_i^{(i)}$ as before.

Adding another dimension



The new extremal processes should not be limited to BBM:

A. Bovier (IAM Bonn)

- Branching random walk [Bramson '78, Addario-Berry, Aídékon '13 (law of max), Madaule '13 (full extremal process),...]
- Gaussian free field in d=2 [Bolthausen, Deuschel, Giacomin '01, Bramson-Ding-Zeitouni '13, Biskup-Louidor '13 [Poisson cluster extremes]]

- Branching random walk [Bramson '78, Addario-Berry, Aídékon '13 (law of max), Madaule '13 (full extremal process),...]
- Gaussian free field in d=2 [Bolthausen, Deuschel, Giacomin '01, Bramson-Ding-Zeitouni '13, Biskup-Louidor '13 [Poisson cluster extremes]]
- Cover times of random walks [Lawler '9,3 Dembo-Peres-Rosen-Zeitouni '06, Belius-Kistler '14]

- Branching random walk [Bramson '78, Addario-Berry, Aídékon '13 (law of max), Madaule '13 (full extremal process),...]
- Gaussian free field in d=2 [Bolthausen, Deuschel, Giacomin '01, Bramson-Ding-Zeitouni '13, Biskup-Louidor '13 [Poisson cluster extremes]]
- Cover times of random walks [Lawler '9,3 Dembo-Peres-Rosen-Zeitouni '06, Belius-Kistler '14]
- Spin glasses with log-correlated potentials [Fyodorov, Bouchaud '08, Arguin, Zindy '12..]

- Branching random walk [Bramson '78, Addario-Berry, Aídékon '13 (law of max),
 Madaule '13 (full extremal process),...]
- Gaussian free field in d=2 [Bolthausen, Deuschel, Giacomin '01, Bramson-Ding-Zeitouni '13, Biskup-Louidor '13 [Poisson cluster extremes]]
- Cover times of random walks [Lawler '9,3 Dembo-Peres-Rosen-Zeitouni '06, Belius-Kistler '14]
- Spin glasses with log-correlated potentials [Fyodorov, Bouchaud '08, Arguin, Zindy '12..]
- Statistics of zeros of Riemann zeta-function [Fyodorov, Keating '12]

Thank you for your attention!

