Dirac operators in Graphene

Hanne Van Den Bosch

EMALCA, 12 de enero 2022

Outline

- Operators for Solid State Physics
- Bloch bands and Dirac points in graphene
- Bounded pieces of graphene

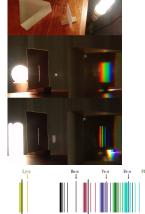
Based on joint work with Rafael Benguria, Søren Fournais and Edgardo Stockmeyer.

Quantum Mechanics

- States : \mathcal{H} Hilbert space
- An Hamiltonian H: self-adjoint
- Schrödinger's equation

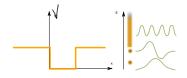
$$i\partial_t \Psi_t = H\Psi_t.$$

- Interpretation ?
- Spectral theorem

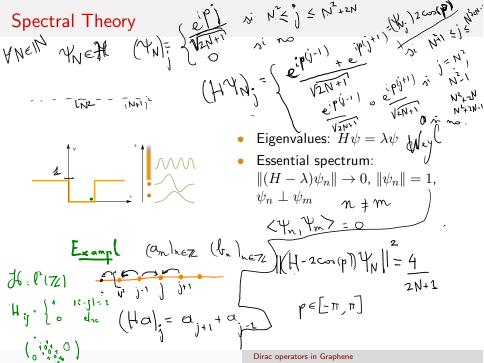


J. Bricmont, Making Sense of Quantum Mechanics, Springer

Spectral Theory



• Eigenvalues: $H\psi = \lambda \psi$



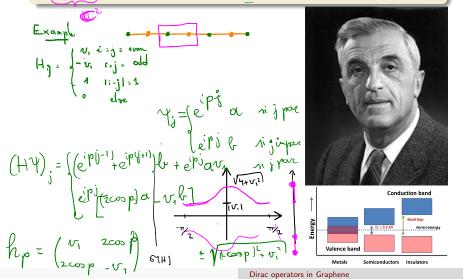
Spectral Theory

- Eigenvalues: $H\psi = \lambda \psi$
- Essential spectrum: $\|(H-\lambda)\psi_n\| \to 0, \ \|\psi_n\| = 1,$ $\psi_n \perp \psi_m$
- Periodic potentials ?

Bloch-Floquet Theory

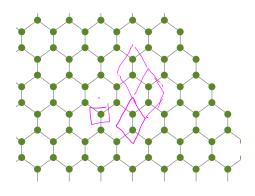
<l

A unitary transformation to a family of operators on the states for a single cell, depening on a parameter in the dual lattice.

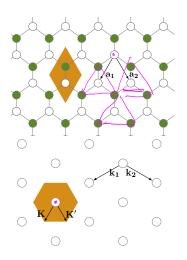


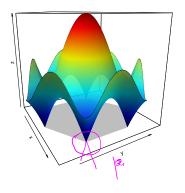
Graphene

André Geim and Constantin Novoselov.

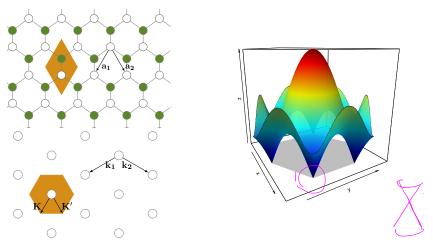


Band structure of Graphene



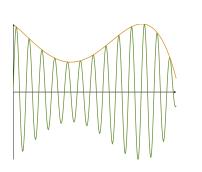


Band structure of Graphene - Tight-binding model



Wallace (1949), see also recent papers of Fefferman & Weinstein, Comech & Berkolaiko

Dirac - finally

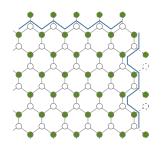


$$\mathcal{H} = L^2(\mathbb{R}^2, \mathbb{C}^2)$$

$$D = -i \begin{pmatrix} 0 & \partial_x - i\partial_y \\ -\partial_x + i\partial_y & 0 \end{pmatrix}$$

Dirac - in bounded domains?

$$D = -i \begin{pmatrix} 0 & \partial_x - i \partial_y \\ -\partial_x + i \partial_y & 0 \end{pmatrix}$$



Muchas Gracias!