Solving the recombination equation

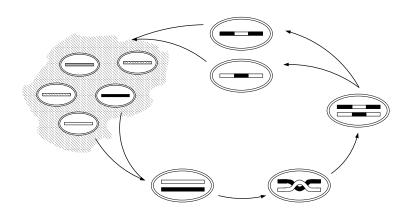
Ellen Baake

Bielefeld University

joint work with Michael Baake

- 1 Recombination
- 2. Deterministic dynamics forward in time
- 3. Stochastic partitioning process backward in time

Recombination



major source of genetic variability in populations dynamics of genetic composition of germ cell pool (deterministic limit) ??

Sequences, types, populations

individual: sequence of n sites $S = \{1, ..., n\}$

letter at site i: $x_i \in X_i$ (finite), $1 \le i \le n$

types: $x := (x_1, \dots, x_n) \in X_1 \times \dots \times X_n =: X$

marginal types: $x_I := (x_i)_{i \in I}, \ \emptyset \neq I \subseteq S$

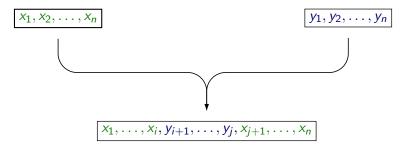
population: $p = (p(x))_{x \in X}$ probability measure on X

 $p(x) \geqslant 0$ proportion of individuals of type $x \in X$

$$\sum_{x \in X} p(x) = 1$$

Recombining sequences

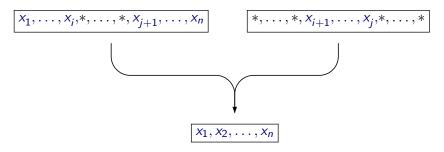
crossovers between sites i and i + 1, and between j > i and j + 1



offspring copies from (randomly chosen) ordered pair of parents and replaces a randomly chosen individual in the population

Recombining sequences

crossovers between sites i and i + 1, and between j > i and j + 1



offspring copies from (randomly chosen) ordered pair of parents and replaces a randomly chosen individual in the population '* at site $i' = X_i$

Partitions

- reco event defines a partition \mathcal{A} of S into at most two parts ex.: $\mathcal{A} = \{\{1, \dots, i, j+1, \dots, n\}, \{i+1, \dots, j\}\}$
- $A = \{S\} = 1$: offspring copies first parent
- $\mathcal{A} = \{A_1, A_2\}$, $A_1, A_2 \neq \varnothing, A_1 \dot{\cup} A_2 = S$:

- $\varrho(\mathcal{A})$ rate of recombination according to \mathcal{A} , $\mathcal{A} \in \mathcal{P}_{\leq 2}(\mathcal{S})$
- → recombination equation:

$$\dot{p}_t(x) = \sum_{\mathcal{A} \in \mathcal{P}_2(S)} \varrho(\mathcal{A}) \big[p_t(x_{A_1}, *) p_t(*, x_{A_2}) - p_t(x) \big], \quad x \in X.$$

formidable!

Partitions

- $\mathcal{P}(S)$: set of all partitions of S

History

- first study of recombination dynamics: Jennings 1917, Robbins 1918
- iterative procedure to determine solution: Geiringer 1944, Bennett 1954
- genetic algebras:, Lyubich 1992
- Haldane linearisation: McHale and Ringwood, 1983 (transforms nonlinear dynamics into linear one in higher-dimensional space by adding multilinear transforms of p_t)

Aim: Do it right....

Recombinators

• canonical projection: for $\varnothing \neq I \subseteq S$,

$$\pi_I: X \to X_{i \in I} X_i = X_I, \quad \pi_I(x) = (x_i)_{i \in I} = x_I$$

• marginal measure wrt sites in I: for $\nu \in P(X)$,

$$\pi_{I}.\nu = \nu \circ \pi_{I}^{-1} =: \nu^{I}$$

type distribution of sites in *I* for $x_i \in X_i$: $\nu^I(x_i) = \nu(x_i, *)$

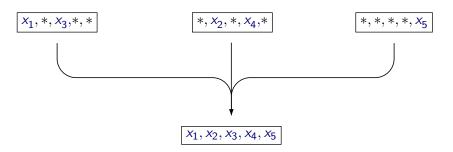
• recombinator: for $\mathcal{A} = \{A_1, \dots, A_m\} \in \mathcal{P}(S)$,

$$P(X) \longrightarrow P(X)$$
 $R_{\mathcal{A}}(\nu) := \nu^{A_1} \otimes \ldots \otimes \nu^{A_n}$
 $(R_{\mathcal{A}}(\nu))(x) = \nu(x_{A_1}, *) \cdot \ldots \cdot \nu(*, x_{A_n})$

distribution of sequences randomly pieced together according to $\ensuremath{\mathcal{A}}$

Recombinators

$$R_{\mathcal{A}}(p) := p^{A_1} \otimes \ldots \otimes p^{A_n} \quad \text{for } \mathcal{A} = \{\{1,3\}, \{2,4\}, \{5\}\}:$$



(generalised) recombination equation:

$$\dot{p}_t = \sum_{\mathcal{A} \in \mathcal{P}_{\geqslant 2}(S)} \varrho(\mathcal{A}) (R_{\mathcal{A}} - \mathbb{1}) (p_t),$$

existence and uniqueness of solution, and forward invariance of P(X), via standard methods



Factorisation property of recombinators

for
$$\varnothing \neq U \subseteq S$$
, $A \in \mathcal{P}(U)$, $\nu^U \in \mathbf{P}(X_U)$:
marginal recombinator: $R_A^U(\nu^U)$ defined as before, with S replaced by U

Lemma

$$S = U \dot{\cup} V, \ \mathcal{A} \in \mathcal{P}(U), \ \mathcal{B} \in \mathcal{P}(V), \ \nu \in \mathbf{P}(X) \leadsto$$

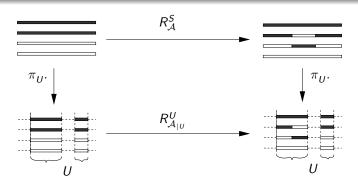
$$R_{A\cup B}(\nu) = R_A^U(\nu^U) \otimes R_B^V(\nu^V).$$

Marginalisation property of recombinators

Lemma

$$A \in \mathcal{P}(S)$$
, $\emptyset \neq U \subseteq S$, $\nu \in \mathbf{P}(X) \leadsto$

$$\pi_U.\big(R_{\mathcal{A}}^{\mathcal{S}}(\nu)\big) \,=\, R_{\mathcal{A}|_U}^U(\pi_U.\nu).$$



 $\mathcal{A}|_{U}$ restriction of \mathcal{A} to U

Marginalisation consistency of recombination equation

Proposition

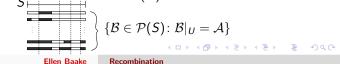
 $\varnothing \neq U \subseteq S$, p_{\star} solution of recombination equation with $p_0 \in \mathbf{P}(X) \leadsto (p_t^U)_{t>0}$ on X_U solves

Fllen Baake

$$\frac{\mathrm{d}}{\mathrm{d}t} p_t^U = \sum_{\mathcal{A} \in \mathcal{P}_{\geq 2}(U)} \varrho^U (\mathcal{A}) \left(R_{\mathcal{A}}^U - \mathbb{1} \right) (p_t^U)$$

with $p_0^U = \pi_U p_0$ and marginalised rates

 $A \in \mathcal{P}(U)$



Solving the recombination equation

$$\mathcal{B} = \{B_1, \dots, B_m\}$$
, p_t solution of recombination equation \leadsto

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{\mathcal{B}}(\rho_{t}) = \sum_{i=1}^{m} \left(\frac{\mathrm{d}}{\mathrm{d}t} \rho_{t}^{B_{i}}\right) \otimes \bigotimes_{j:j\neq i} \rho_{t}^{B_{j}}$$

$$= \sum_{i=1}^{m} \sum_{\mathfrak{b}_{i} \in \mathcal{P}_{\geqslant 2}(B_{i})} \varrho^{B_{i}}(\mathfrak{b}_{i}) \left(R_{\mathfrak{b}_{i}}^{B_{i}} - \mathbb{1}\right) (\rho_{t}^{B_{i}}) \otimes \bigotimes_{j:j\neq i} \rho_{t}^{B_{j}}$$

$$= \sum_{i=1}^{m} \sum_{\mathfrak{b}_{i} \in \mathcal{P}_{\geqslant 2}(B_{i})} \varrho^{B_{i}}(\mathfrak{b}_{i}) \left(R_{(\mathcal{B} \setminus B_{i}) \cup \mathfrak{b}_{i}} - R_{\mathcal{B}}\right) (\rho_{t})$$

$$= \sum_{\mathcal{C} \prec \mathcal{B}} Q_{\mathcal{B}\mathcal{C}} \left(R_{\mathcal{C}} - R_{\mathcal{B}}\right) (\rho_{t}) = \sum_{\mathcal{C} \preccurlyeq \mathcal{B}} Q_{\mathcal{B}\mathcal{C}} R_{\mathcal{C}}(\rho_{t})$$

$$= \sum_{\mathcal{C} \in \mathcal{P}(S)} Q_{\mathcal{B}\mathcal{C}} R_{\mathcal{C}}(\rho_{t})$$

Solving the recombination equation

Theorem

 p_t solution of recombination equation with $p_0 \in \textbf{\textit{P}}(X)$, and $\mathcal{B} \in \mathcal{P}(S) \leadsto$

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{\mathcal{B}}(p_t) = \sum_{\mathcal{C}\in\mathcal{P}(S)}Q_{\mathcal{B}\mathcal{C}}R_{\mathcal{C}}(p_t),$$

with Markov generator $Q = (Q_{\mathcal{BC}})_{\mathcal{C} \in \mathcal{P}(S)}$

$$Q_{\mathcal{BC}} = \begin{cases} \varrho^{B_i}(\mathfrak{b}_i), & \text{if } \mathcal{C} = (\mathcal{B} \setminus B_i) \cup \mathfrak{b}_i \text{ for some} \\ \mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i) \text{ and exactly one } i, \\ -\sum\limits_{i=1}^{|\mathcal{B}|} \sum\limits_{\mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i)} \varrho^{B_i}(\mathfrak{b}_i), & \text{if } \mathcal{C} = \mathcal{B}, \\ 0, & \text{otherwise}. \end{cases}$$

Solution of the recombination equation

column vector
$$\varphi_t := (\varphi_t(\mathcal{B}))_{\mathcal{B} \in \mathcal{P}(S)}$$
 with $\varphi_t(\mathcal{B}) := R_{\mathcal{B}}(p_t)$

$$ightarrow$$
 linear system: $\dot{\varphi}_t = Q \varphi_t$

solution:
$$\varphi_t = e^{tQ} \varphi_0$$

first component:
$$p_t = \varphi_t(\mathbf{1}) = \sum_{A \in \mathcal{P}(S)} (e^{tQ})_{1A} R_A(p_0)$$

Theorem

The recombination equation has the solution

$$p_t = \sum_{\mathcal{A} \in \mathcal{P}(S)} a_t(\mathcal{A}) R_{\mathcal{A}}(p_0)$$

with
$$a_t(\mathcal{A}) := (e^{tQ})_{1\mathcal{A}}$$
.

Interpretation??

Partitioning process

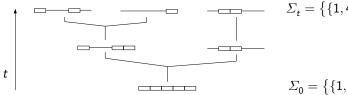
$$Q_{\mathcal{BC}} = \begin{cases} \varrho^{B_i}(\mathfrak{b}_i), & \text{if } \mathcal{C} = (\mathcal{B} \setminus B_i) \cup \mathfrak{b}_i \text{ for some} \\ & \mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i) \text{ and exactly one } i, \\ -\sum\limits_{i=1}^{|\mathcal{B}|} \sum\limits_{\mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i)} \varrho^{B_i}(\mathfrak{b}_i), & \text{if } \mathcal{C} = \mathcal{B}, \\ 0, & \text{otherwise.} \end{cases}$$

Q generates partitioning process $\{\Sigma_t\}_{t\geqslant 0}$:

- Markov chain in continuous time with state space $\mathcal{P}(S)$
- progressive refinement: if $\Sigma_t = \mathcal{B}$, replace part B_i of \mathcal{B} by $\mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i)$ at rate $\varrho^{B_i}(\mathfrak{b}_i)$; for $1 \leqslant i \leqslant |\mathcal{B}|$, independently of all other parts

Partitioning process

Q generates $\{\Sigma_t\}_{t\geqslant 0}$:



$$\Sigma_t = \{\{1,4\}, \{2,3\}, \{5\}\}$$

$$\Sigma_0 = \{\{1, 2, 3, 4, 5\}\}$$

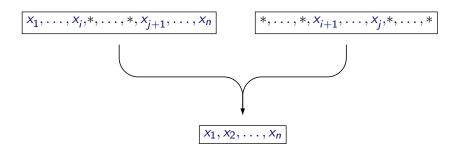
semigroup:

$$\left(\operatorname{e}^{tQ}\right)_{\mathcal{BC}} = \mathbb{P}\left(\Sigma_{t} = \mathcal{C} \mid \Sigma_{0} = \mathcal{B}\right)$$

in particular:

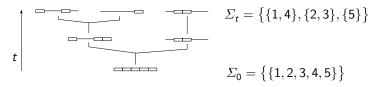
$$a_t(\mathcal{A}) = (e^{tQ})_{1\mathcal{A}} = \mathbb{P}(\Sigma_t = \mathcal{A} \mid \Sigma_0 = 1)$$

Partitioning and recombination



recombination forward in time = splitting up backward in time

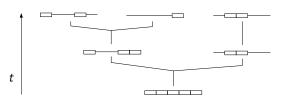
Partitioning and recombination



 $\{\Sigma_t\}_{t\geqslant 0}$ describes partitioning of genetic material of an individual backward in time

- present individual: $\Sigma_0 = \{S\} = \mathbf{1}$
- at time t before the present: $\Sigma_t = \mathcal{B} = \{B_1, \dots B_m\}$ each B_i corresponds to parent that contributed sites in B_i
- B_i -individual splits up into \mathfrak{b}_i at rate $\varrho^{B_i}(\mathfrak{b}_i)$, $\mathfrak{b}_i \in \mathcal{P}_{\geqslant 2}(B_i)$, independently for all i
- ullet \leadsto transition from ${\mathcal B}$ to ${\mathcal C} \prec {\mathcal B}$ at rate $Q_{{\mathcal B} {\mathcal C}}$!

Construction of type in present population:

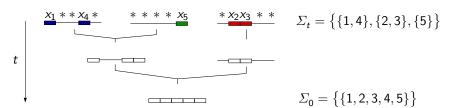


$$\Sigma_t = \{\{1,4\}, \{2,3\}, \{5\}\}$$

$$\Sigma_0 = \{\{1, 2, 3, 4, 5\}\}$$

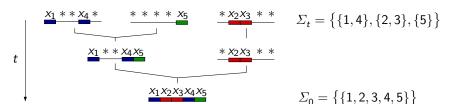
1 run $\{\Sigma_t\}_{t\geqslant 0}$ (untyped, backward)

Construction of type in present population:



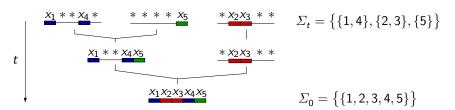
- ① run $\{\Sigma_t\}_{t\geqslant 0}$ (untyped, backward)
- assign colours (parents) and letters (types) If $\Sigma_t = \mathcal{A} = \{A_1, \dots, A_m\}$: draw letters at sites in A_i from $p_0^{A_i}$, independently for $1 \le i \le m \leadsto$ type distribution $R_{\mathcal{A}}(p_0)$

Construction of type in present population:



- run $\{\Sigma_t\}_{t\geqslant 0}$ (untyped, backward)
- ② assign colours (parents) and letters (types) If $\Sigma_t = \mathcal{A} = \{A_1, \dots, A_m\}$: draw letters at sites in A_i from $p_0^{A_i}$, independently for $1 \leq i \leq m \rightsquigarrow$ type distribution $R_{\mathcal{A}}(p_0)$
- **③** propagate colours and letters forward in time \rightsquigarrow type distribution $R_A(p_0)$

Construction of type in present population:



$$p_{t} = \sum_{\mathcal{A} \in \mathcal{P}(S)} \underbrace{\mathbb{P}\left(\Sigma_{t} = \mathcal{A} \mid \Sigma_{0} = \mathbf{1}\right)}_{a_{t}(\mathcal{A})} R_{\mathcal{A}}(p_{0}) = \mathbb{E}\left(R_{\Pi}(p_{0})\right)$$

stochastic representation of deterministic solution

Applications and connections

- recursive evaluation of e^{tQ} (Q triangular!) (with M. Salamat, E. Shamsara, 2016)
- closed formula for single crossovers (E.&M.B. 2003)
- analogous solution for discrete-time system

$$p_{t+1} = \sum_{\mathcal{A} \in \mathcal{P}(S)} r(\mathcal{A}) R_{\mathcal{A}}(p_t) \rightsquigarrow p_t = \sum_{\mathcal{A} \in \mathcal{P}(S)} a_t(\mathcal{A}) R_{\mathcal{A}}(p_0)$$

(E.&M.B. 2016, S. Martínez 2016a, 2016b)

- tree representation for solution for single crossovers in discrete time (with U. von Wangenheim, 2014, and M. Esser, work in progress)
- a different tree representation for general partitions in discrete time, and quasistationary distribution (S. Martínez 2016a, 2016b)

Job ad

1 postdoc and 1 PhD position available at Bielefeld early next year

- to work on recombination and/or mutation & selection
- with Fernando Cordero and/or Ellen & Michael Baake interested? contact us!