Lines of descent in a deterministic model with mutation and frequency dependent selection

Fernando Cordero - Bielefeld University *

School on Information and Randomness 2016 - Santiago de Chile

December 2016

^{*}joint work (in progress) with E. Baake and S. Hummel

Structure of the talk

Models with mutation and frequency dependent selection

The deterministic model

The Moran model

Moran vs deterministic model

The ancestral selection graph (ASG)

Ancestral processes in the non-interactive deterministic limit

Ancestral processes in the frequency dependent deterministic limit

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

 \triangleright starting with a proportion z_0 of 0-individuals,

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

- \triangleright starting with a proportion z_0 of 0-individuals,
- ▶ the proportion $z(t, z_0)$ of 0-individuals at time t follows

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

- \triangleright starting with a proportion z_0 of 0-individuals,
- ▶ the proportion $z(t, z_0)$ of 0-individuals at time t follows

$$\frac{dz}{dt}(t) = \alpha(\beta - \gamma z(t))z(t)(1 - z(t)) + u_0(1 - z(t)) - u_1 z(t), (1)$$

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

- \triangleright starting with a proportion z_0 of 0-individuals,
- ▶ the proportion $z(t, z_0)$ of 0-individuals at time t follows

$$\frac{dz}{dt}(t) = \alpha(\beta - \gamma z(t))z(t)(1 - z(t)) + u_0(1 - z(t)) - u_1 z(t), (1)$$

ightharpoonup lphaeta non-interactive selection, $lpha|\gamma|$ interactive selection, u_i mutation to type $i,\ i\in\{0,1\},\ u:=u_0+u_1$ total rate of mutation.

We consider a 2-type (types in $\{0,1\}$) population subject to mutation and pairwise dependent selection, where

- \triangleright starting with a proportion z_0 of 0-individuals,
- ▶ the proportion $z(t, z_0)$ of 0-individuals at time t follows

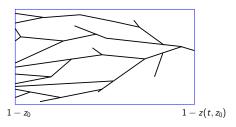
$$\frac{dz}{dt}(t) = \alpha(\beta - \gamma z(t))z(t)(1 - z(t)) + u_0(1 - z(t)) - u_1 z(t), (1)$$

- ightharpoonup lphaeta non-interactive selection, $lpha|\gamma|$ interactive selection, u_i mutation to type $i,\ i\in\{0,1\},\ u:=u_0+u_1$ total rate of mutation.
- ▶ In the sequel, we focus on the case $\beta > 0, \gamma \leq 0$.

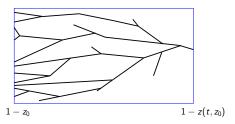
► Forward in time behavior is well-known: stable points, bifurcation structure...

- ► Forward in time behavior is well-known: stable points, bifurcation structure...
- Ancestral picture is missing!

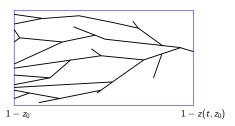
- ► Forward in time behavior is well-known: stable points, bifurcation structure...
- Ancestral picture is missing!



- Forward in time behavior is well-known: stable points, bifurcation structure...
- Ancestral picture is missing!
- ▶ Prob. of sampling a 1-individual at time $t \equiv 1 z(t, z_0)$.



- Forward in time behavior is well-known: stable points, bifurcation structure...
- Ancestral picture is missing!
- ▶ Prob. of sampling a 1-individual at time $t \equiv 1 z(t, z_0)$.
- Can we express this probability using an ancestral process (duality!)?



Population of size N, two types $\{0,1\}$.

▶ If an individual reproduces, its single offspring inherits its type and replaces a uniformly chosen individual.

- If an individual reproduces, its single offspring inherits its type and replaces a uniformly chosen individual.
 - Neutral reproduction:
 Each individual reproduces at rate 1.

- ▶ If an individual reproduces, its single offspring inherits its type and replaces a uniformly chosen individual.
 - Neutral reproduction:
 Each individual reproduces at rate 1.
 - Non-interactive selective reproduction: Each type 0-individual reproduces at rate $\alpha\beta$.

- ▶ If an individual reproduces, its single offspring inherits its type and replaces a uniformly chosen individual.
 - Neutral reproduction:
 Each individual reproduces at rate 1.
 - Non-interactive selective reproduction: Each type 0-individual reproduces at rate $\alpha\beta$.
 - Non-interactive selective reproduction: Each type 0-individual picks at random an individual at rate $\alpha|\gamma|$ and checks its type. Type = 0 \Rightarrow reproduction.

- ▶ If an individual reproduces, its single offspring inherits its type and replaces a uniformly chosen individual.
 - Neutral reproduction:
 Each individual reproduces at rate 1.
 - Non-interactive selective reproduction: Each type 0-individual reproduces at rate $\alpha\beta$.
 - Non-interactive selective reproduction: Each type 0-individual picks at random an individual at rate $\alpha|\gamma|$ and checks its type. Type = 0 \Rightarrow reproduction.
- ▶ Each individual mutates to type i at rate u_i , $i \in \{0, 1\}$.

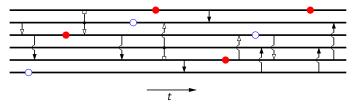
The graphical representation $(\beta > 0, \gamma < 0)$

 \longrightarrow = Neutral reproduction, \longrightarrow = Non-interactive selective reproduction,

□ → > = Interactive selective reproduction,

 \bigcirc = Mutation to type 0, \bullet = Mutation to type 1,

Untyped picture:



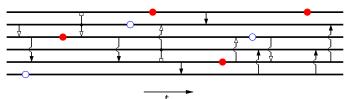
The graphical representation $(\beta > 0, \gamma < 0)$

 $\longrightarrow=$ Neutral reproduction, $\longrightarrow=$ Non-interactive selective reproduction,

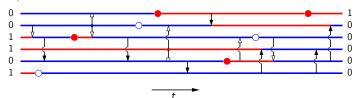
ightharpoonup = Interactive selective reproduction,

 \bigcirc = Mutation to type 0, \bullet = Mutation to type 1,

Untyped picture:



Typed picture:



Dynamical law of large numbers

For $t \ge 0$, we denote by X_t^N the number of 0-individuals at time t in the Moran model of size N.

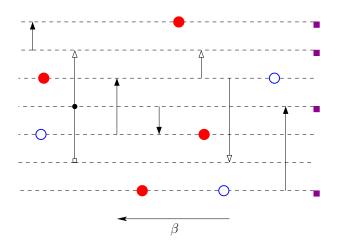
Proposition (Law of large numbers)

For $z_0 \in [0,1]$, let $z(z_0,\cdot)$ be the solution of (1) with $z(0,z_0)=z_0$. Assume that $\lim_{N\to\infty}\frac{X_0^N}{N}=z_0\in [0,1]$. Then, for all $\varepsilon>0$, we have

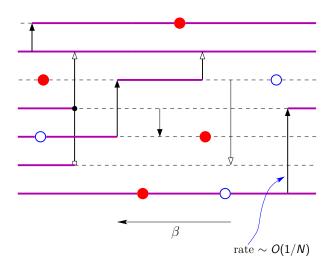
$$\lim_{N\to\infty} P\left(\sup_{t\le T}\left|\frac{X_t^N}{N}-z(t,z_0)\right|>\varepsilon\right)=0,$$

i.e. X^N/N converges to $z(\cdot,z_0)$ uniformly in compacts in probability.

The ASG (N large)



The ASG (N large)



Models with mutation and frequency dependent selection

Ancestral processes in the non-interactive deterministic limit

The case without mutation

The case with mutation

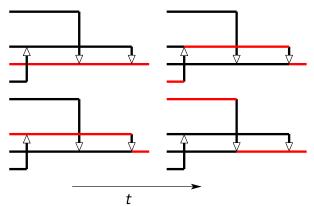
Ancestral processes in the frequency dependent deterministic limit

The asymptotic ASG $(\gamma = 0)$

▶ When $\gamma = 0$ and $N \to \infty$, only bifurcation and mutation events survive.

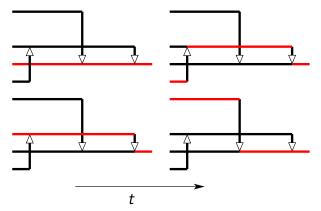
The asymptotic ASG $(\gamma = 0)$

- ▶ When $\gamma = 0$ and $N \to \infty$, only bifurcation and mutation events survive.
- ▶ In addition, if there is no mutation



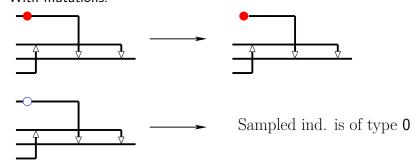
The asymptotic ASG ($\gamma = 0$)

- ▶ When $\gamma = 0$ and $N \to \infty$, only bifurcation and mutation events survive.
- In addition, if there is no mutation

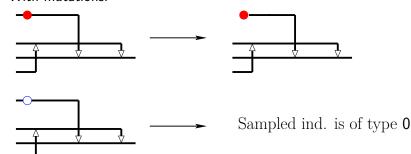


The probability of sampling an individual of type 0 at (forward) time t depends only on the number of lines in the ASG at time 0.

▶ With mutations:

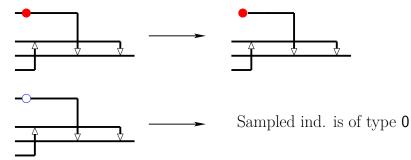


With mutations:



Mutation to type $1 \rightarrow$ erase one line.

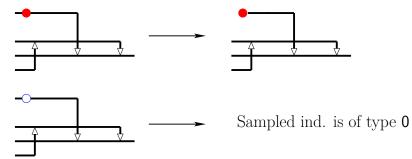
With mutations:



Mutation to type $1 \rightarrow$ erase one line.

Mutation to type $0 \rightarrow \text{stop!}$ the sampled individual is of type 0.

With mutations:



Mutation to type $1 \rightarrow$ erase one line.

Mutation to type $\mathbf{0} \to \text{stop!}$ the sampled individual is of type $\mathbf{0}.$

Killed ASG (E. Baake, U. Lenz, A. Wakolbinger)

Duality

Let $R = (R_t)_{\geq 0}$ be the line-counting process in the killed-ASG, i.e. the continuous time Markov chain with rates

$$q_R(k,j) := \left\{ egin{array}{ll} ks & ext{if } j=k+1, \ & ku_1 & ext{if } j=k-1, \ & ku_0 & ext{if } j=\infty. \end{array}
ight.$$

Theorem (Duality)

For $t \geq 0$ and $z_0 \in (0,1)$, we have

$$1-z(t,z_0):=E_1\left[(1-z_0)^{R_t}\right].$$

Absorption probability

Define
$$h_k := P(R \text{ absorbs in } 0 | R_0 = k)$$

Absorption probability

Define
$$h_k := P(R \text{ absorbs in } 0 | R_0 = k)$$

▶ $h_0 = 1$ and $h_\infty = 0$.

Absorption probability

Define $h_k := P(R \text{ absorbs in } 0 | R_0 = k)$

- $h_0=1$ and $h_\infty=0$.
- First step analysis $\Rightarrow sh_{k+1} (u+s)h_k + u_1h_{k-1} = 0$.

Absorption probability

Define $h_k := P(R \text{ absorbs in } 0 | R_0 = k)$

- ▶ $h_0 = 1$ and $h_\infty = 0$.
- First step analysis $\Rightarrow sh_{k+1} (u+s)h_k + u_1h_{k-1} = 0$.
- $h_k = y_*^k, \text{ where }$

$$y_*:=\left\{\begin{array}{ll} \frac{u+s-\sqrt{(u+s)^2-4u_1s}}{2s} & \text{if } s>0,\\ \frac{u_1}{u} & \text{if } s=0. \end{array}\right.$$

Absorption probability

Define $h_k := P(R \text{ absorbs in } 0 | R_0 = k)$

- $h_0 = 1 \text{ and } h_\infty = 0.$
- First step analysis $\Rightarrow sh_{k+1} (u+s)h_k + u_1h_{k-1} = 0$.
- $h_k = y_*^k$, where

$$y_* := \left\{ \begin{array}{ll} \frac{u+s-\sqrt{(u+s)^2-4u_1s}}{2s} & \text{if } s>0, \\ \frac{u_1}{u} & \text{if } s=0. \end{array} \right.$$

▶ Duality $\Rightarrow y_*$ is also the proportion of 1's at stationarity.

Models with mutation and frequency dependent selection

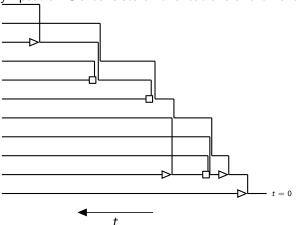
Ancestral processes in the non-interactive deterministic limit

Ancestral processes in the frequency dependent deterministic limit. The case without mutation

The case with mutation

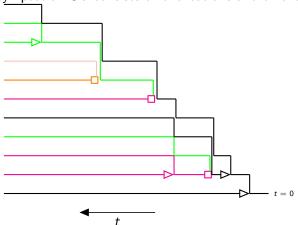
The Asymptotic ASG with interactions and no mutations

The asymptotic ASG consists of bifurcations and trifurcations.

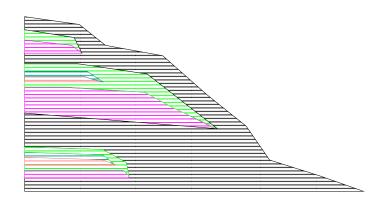


The Asymptotic ASG with interactions and no mutations

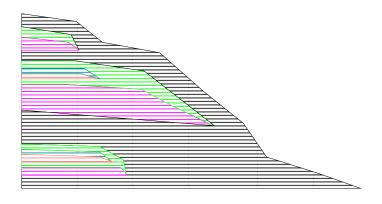
The asymptotic ASG consists of bifurcations and trifurcations.



Ancestral selection graph

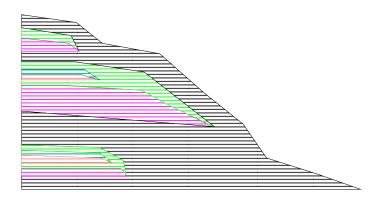


Ancestral selection graph



How to encode this information in order to determine the probability of sampling an individual of type 1?

Ancestral selection graph



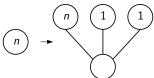
How to encode this information in order to determine the probability of sampling an individual of type 1? Ternary trees with marked leaves!

▶ We start with (1).

- ▶ We start with (1).
- ▶ Before the first trifurcation: the root increases its level by 1 at each bifurcation.

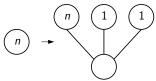
- ▶ We start with (1).
- ▶ Before the first trifurcation: the root increases its level by 1 at each bifurcation.

▶ At the first trifurcation: the root produces three children, the left child inherits the mark of the root and the other two are marked with 1.



- ▶ We start with (1).
- ▶ Before the first trifurcation: the root increases its level by 1 at each bifurcation.

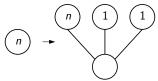
▶ At the first trifurcation: the root produces three children, the left child inherits the mark of the root and the other two are marked with 1.



• Left-child \equiv the region before trifurcation.

- ▶ We start with (1).
- ▶ Before the first trifurcation: the root increases its level by 1 at each bifurcation.

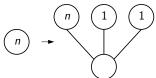
▶ At the first trifurcation: the root produces three children, the left child inherits the mark of the root and the other two are marked with 1.



- Left-child \equiv the region before trifurcation.
- Middle-child ≡ the checking line.

- ▶ We start with (1).
- ▶ Before the first trifurcation: the root increases its level by 1 at each bifurcation.

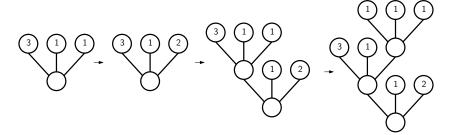
▶ At the first trifurcation: the root produces three children, the left child inherits the mark of the root and the other two are marked with 1.



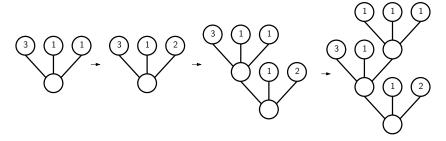
- Left-child \equiv the region before trifurcation.
- Middle-child ≡ the checking line.
- Right-child

 ≡ the incoming line.

▶ Leaves evolve independently, increasing its mark by 1 at each bifurcation and producing three children at a trifurcation.

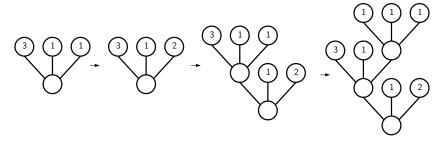


▶ Leaves evolve independently, increasing its mark by 1 at each bifurcation and producing three children at a trifurcation.



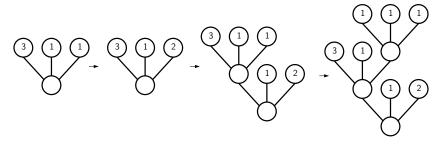
▶ Thus, for $\mathcal{T} = (\tau, m)$ and $\ell \in L_{\tau}$, we have transitions

▶ Leaves evolve independently, increasing its mark by 1 at each bifurcation and producing three children at a trifurcation.



► Thus, for $\mathcal{T} = (\tau, m)$ and $\ell \in L_{\tau}$, we have transitions 1. $\mathcal{T} \mapsto \mathcal{T}^{\vee,\ell}$ at rate $\alpha\beta m(\ell)$.

▶ Leaves evolve independently, increasing its mark by 1 at each bifurcation and producing three children at a trifurcation.



- ▶ Thus, for $\mathcal{T} = (\tau, m)$ and $\ell \in L_{\tau}$, we have transitions
 - 1. $\mathcal{T} \mapsto \mathcal{T}^{\Upsilon,\ell}$ at rate $\alpha \beta m(\ell)$.
 - 2. $\mathcal{T} \mapsto \mathcal{T}^{\Psi,\ell}$ at rate $\alpha | \gamma | m(\ell)$.

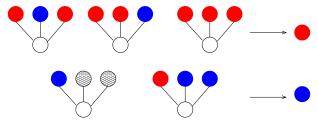
▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.

- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.

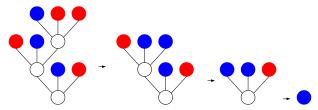
- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.
- ▶ Determining the type of the sampled ind. is equivalent to the following coloring problem.

- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.
- ▶ Determining the type of the sampled ind. is equivalent to the following coloring problem.
 - 1. If one of the lines in the leaf ℓ is of type 0, then we color it blue, otherwise it is colored red.

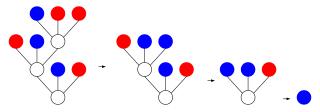
- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.
- Determining the type of the sampled ind. is equivalent to the following coloring problem.
 - 1. If one of the lines in the leaf ℓ is of type 0, then we color it blue, otherwise it is colored red.
 - 2. We propagate the colors as follows



- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.
- Determining the type of the sampled ind. is equivalent to the following coloring problem.
 - 1. If one of the lines in the leaf ℓ is of type 0, then we color it blue, otherwise it is colored red.
 - 2. We propagate the colors as follows



- ▶ Each leaf ℓ represents a region with $m(\ell)$ lines in the ASG.
- ▶ The rules are "locally" as in the non-interactive case.
- Determining the type of the sampled ind. is equivalent to the following coloring problem.
 - 1. If one of the lines in the leaf ℓ is of type 0, then we color it blue, otherwise it is colored red.
 - 2. We propagate the colors as follows



3. The sampled ind. is of type 1 iff the root is colored red.

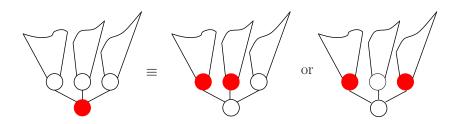
Assume that the current proportion of 1-individuals of is y and that the line-counting tree is at state $\mathcal{T} = (\tau, m)$.

- Assume that the current proportion of 1-individuals of is y and that the line-counting tree is at state $\mathcal{T} = (\tau, m)$.
- ▶ H(T, y) := the probability of sampling a 1-individual.

- Assume that the current proportion of 1-individuals of is y and that the line-counting tree is at state $\mathcal{T} = (\tau, m)$.
- ▶ H(T, y) := the probability of sampling a 1-individual.
- $H(n,y) = y^n.$

- Assume that the current proportion of 1-individuals of is y and that the line-counting tree is at state $\mathcal{T} = (\tau, m)$.
- ▶ H(T, y) := the probability of sampling a 1-individual.
- $\vdash H((n), y) = y^n.$
- ▶ If v_1, v_2, v_3 are the left, middle and right children of the root:

$$H(\mathcal{T},y)\!=\!H(\mathcal{T}_{v_1},y)\left[H(\mathcal{T}_{v_2},y)+H(\mathcal{T}_{v_3},y)-H(\mathcal{T}_{v_2},y)H(\mathcal{T}_{v_3},y)\right].$$



Mutation to type 1 happens at a leaf ℓ at rate $u_1 m(\ell)$.

Mutation to type 1 happens at a leaf ℓ at rate $u_1 m(\ell)$.

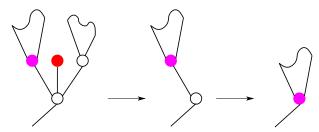
▶ If $m(\ell) > 1$, then the effect is local (we decrease in 1 the mark of the leaf).

Mutation to type 1 happens at a leaf ℓ at rate $u_1 m(\ell)$.

- ▶ If $m(\ell) > 1$, then the effect is local (we decrease in 1 the mark of the leaf).
- ▶ The same happens if $m(\ell) = 1$ and ℓ is the left-child of its parent.

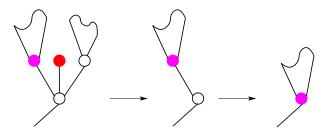
Mutation to type 1 happens at a leaf ℓ at rate $u_1 m(\ell)$.

- ▶ If $m(\ell) > 1$, then the effect is local (we decrease in 1 the mark of the leaf).
- ▶ The same happens if $m(\ell) = 1$ and ℓ is the left-child of its parent.
- ▶ If not, then



Mutation to type 1 happens at a leaf ℓ at rate $u_1 m(\ell)$.

- ▶ If $m(\ell) > 1$, then the effect is local (we decrease in 1 the mark of the leaf).
- ▶ The same happens if $m(\ell) = 1$ and ℓ is the left-child of its parent.
- ▶ If not, then



This transition is denoted by $\mathcal{T} \mapsto \mathcal{T}^{\bullet,\ell}$.

Mutation to type 0 happens at a leaf ℓ at rate $u_0 m(\ell)$.

Pruning and grafting: mutation to type 0

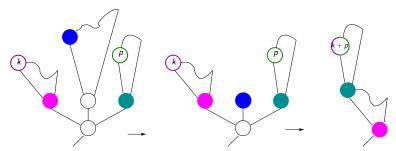
Mutation to type 0 happens at a leaf ℓ at rate $u_0 m(\ell)$.

▶ If ℓ is the most-left leaf of \mathcal{T} : stop! The sampled indiv. is of type 0. We set $\mathcal{T}^{\circ,\ell} = \bowtie$ (cemetery point).

Pruning and grafting: mutation to type 0

Mutation to type 0 happens at a leaf ℓ at rate $u_0 m(\ell)$.

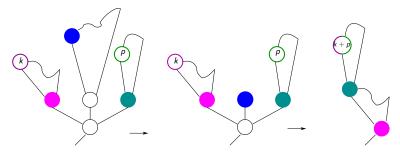
- ▶ If ℓ is the most-left leaf of \mathcal{T} : stop! The sampled indiv. is of type 0. We set $\mathcal{T}^{\circ,\ell} = \bowtie$ (cemetery point).
- ▶ If not, there are two options



Pruning and grafting: mutation to type 0

Mutation to type 0 happens at a leaf ℓ at rate $u_0 m(\ell)$.

- ▶ If ℓ is the most-left leaf of \mathcal{T} : stop! The sampled indiv. is of type 0. We set $\mathcal{T}^{\circ,\ell} = \bowtie$ (cemetery point).
- ▶ If not, there are two options



This transition is denoted by $\mathcal{T}\mapsto \mathcal{T}^{\circ,\ell}.$

The line-counting tree

Definition

The line-counting tree process $\mathcal{T}^*:=(\mathcal{T}^*(t))_{t\geq 0}$ is the jump process with values on $\Upsilon\cup\{\bowtie\}$ starting at $\widehat{1}$ and with the following transitions. If \mathcal{T}^* is currently in state $\mathcal{T}:=(\tau,m)$: for each $\ell\in L_{\tau}$,

- 1. $\mathcal{T} \longrightarrow \mathcal{T}^{\gamma,\ell}$ at rate $\alpha\beta m(\ell)$.
- 2. $\mathcal{T} \longrightarrow \mathcal{T}^{\Psi,\ell}$ at rate $\alpha |\gamma| m(\ell)$.
- 3. $\mathcal{T} \longrightarrow \mathcal{T}^{\bullet,\ell}$ at rate $u_1 \ m(\ell)$.
- 4. $\mathcal{T} \longrightarrow \mathcal{T}^{\circ,\ell}$ at rate $u_0 \ m(\ell)$.

The states (0) and \bowtie are absorbing states of \mathcal{T}^* .

We extend the definition of H to the cemetery point by setting $H(\bowtie, y) := 0$.

We extend the definition of H to the cemetery point by setting $H(\bowtie, y) := 0$.

Theorem (Duality)

For all t > 0 and $z_0 \in (0,1)$, we have

$$1 - z(t, z_0) = E_{1}[H(T^*(t), 1 - z_0)].$$

We extend the definition of H to the cemetery point by setting $H(\bowtie, y) := 0$.

Theorem (Duality)

For all t > 0 and $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=E_{\widehat{(1)}}[H(\mathcal{T}^*(t),1-z_0)].$$

Proof.

Consider the det. Markov process $y(\cdot, y_0) = 1 - z(\cdot, 1 - y_0)$, $t \ge 0, y_0 \in (0, 1)$.

We extend the definition of H to the cemetery point by setting $H(\bowtie, y) := 0$.

Theorem (Duality)

For all t > 0 and $z_0 \in (0,1)$, we have

$$1 - z(t, z_0) = E_{1}[H(T^*(t), 1 - z_0)].$$

Proof.

Consider the det. Markov process $y(\cdot, y_0) = 1 - z(\cdot, 1 - y_0)$, $t \ge 0, y_0 \in (0, 1)$. We show by induction on the size of the underlying trees that

$$A_{\gamma}H(\mathcal{T},\cdot)(y_0)=A_{\mathcal{T}^*}H(\cdot,y_0)(\mathcal{T}).$$

We extend the definition of H to the cemetery point by setting $H(\bowtie, y) := 0$.

Theorem (Duality)

For all t > 0 and $z_0 \in (0,1)$, we have

$$1 - z(t, z_0) = E_{\widehat{(1)}}[H(\mathcal{T}^*(t), 1 - z_0)].$$

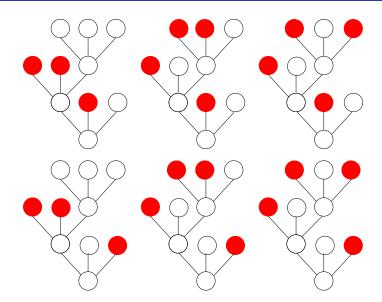
Proof.

Consider the det. Markov process $y(\cdot, y_0) = 1 - z(\cdot, 1 - y_0)$, $t \ge 0, y_0 \in (0, 1)$. We show by induction on the size of the underlying trees that

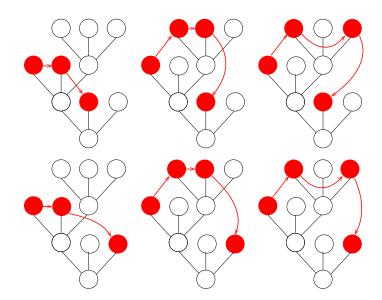
$$A_{V}H(\mathcal{T},\cdot)(y_0)=A_{\mathcal{T}^*}H(\cdot,y_0)(\mathcal{T}).$$

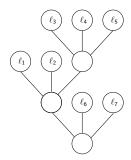
The result follows from classical duality results.

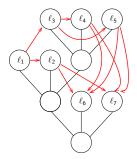
Minimal red-colorings

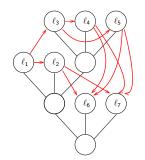


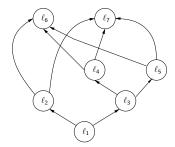
Minimal red-colorings

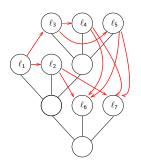


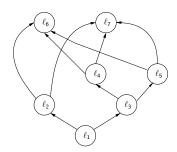




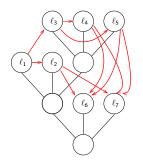


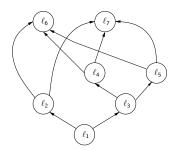




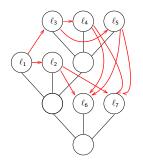


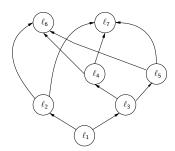
▶ Most left-leave \mapsto Source.



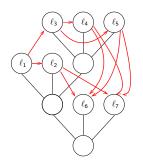


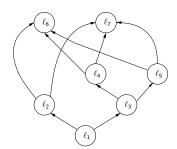
- ▶ Most left-leave → Source.
- ▶ Leaves → Nodes.





- Most left-leave → Source.
- ▶ Leaves → Nodes.
- ightharpoonup Marks on the nodes.



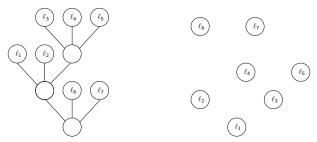


- ▶ Most left-leave → Source.
- ▶ Leaves → Nodes.
- ► Marks on the leaves → Marks on the nodes.
- ▶ Minimal colorings \mapsto Strings (paths from source to a sink).

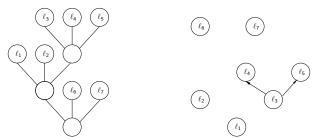
$$\rho(n) = n.$$

- $\rho((n)) = (n).$
- ▶ Denote by v_1, v_2, v_3 the left, middle and right children of the root of \mathcal{T} .

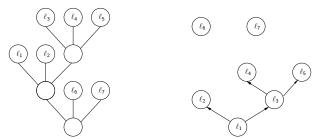
- $\rho((n)) = (n).$
- ▶ Denote by v_1, v_2, v_3 the left, middle and right children of the root of \mathcal{T} .
- ▶ $\rho(\mathcal{T})$ is defined from $\rho(\mathcal{T}_{v_1})$, $\rho(\mathcal{T}_{v_2})$ and $\rho(\mathcal{T}_{v_3})$ by adding, for each sink v of $\rho(\mathcal{T}_{v_1})$, two edges, one from v to the source of $\rho(\mathcal{T}_{v_2})$ and the other from v to the source of $\rho(\mathcal{T}_{v_3})$.



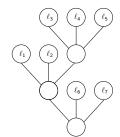
- $\rho((n)) = (n).$
- ▶ Denote by v_1, v_2, v_3 the left, middle and right children of the root of \mathcal{T} .
- ▶ $\rho(\mathcal{T})$ is defined from $\rho(\mathcal{T}_{v_1})$, $\rho(\mathcal{T}_{v_2})$ and $\rho(\mathcal{T}_{v_3})$ by adding, for each sink v of $\rho(\mathcal{T}_{v_1})$, two edges, one from v to the source of $\rho(\mathcal{T}_{v_2})$ and the other from v to the source of $\rho(\mathcal{T}_{v_3})$.

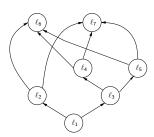


- $\rho((n)) = (n).$
- ▶ Denote by v_1, v_2, v_3 the left, middle and right children of the root of \mathcal{T} .
- ▶ $\rho(\mathcal{T})$ is defined from $\rho(\mathcal{T}_{v_1})$, $\rho(\mathcal{T}_{v_2})$ and $\rho(\mathcal{T}_{v_3})$ by adding, for each sink v of $\rho(\mathcal{T}_{v_1})$, two edges, one from v to the source of $\rho(\mathcal{T}_{v_2})$ and the other from v to the source of $\rho(\mathcal{T}_{v_3})$.



- $\rho((n)) = (n).$
- ▶ Denote by v_1, v_2, v_3 the left, middle and right children of the root of \mathcal{T} .
- ▶ $\rho(\mathcal{T})$ is defined from $\rho(\mathcal{T}_{v_1})$, $\rho(\mathcal{T}_{v_2})$ and $\rho(\mathcal{T}_{v_3})$ by adding, for each sink v of $\rho(\mathcal{T}_{v_1})$, two edges, one from v to the source of $\rho(\mathcal{T}_{v_2})$ and the other from v to the source of $\rho(\mathcal{T}_{v_3})$.





An inclusion-exclusion formula for the duality function

Let Σ_* be the set of labelled acyclic digraphs with exactly one source.

An inclusion-exclusion formula for the duality function

- Let Σ_* be the set of labelled acyclic digraphs with exactly one source.
- ▶ If $(G, m) \in \Sigma_*$ and $\{\sigma_1, ..., \sigma_n\}$ is the set of strings of G, we define

$$\mathcal{H}(\mathcal{G},y) := \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} y^{m(\sigma_I)},$$

where $m(\sigma_I) := \text{sum of the marks of all nodes covered by } \sigma_I = \bigcup_{i \in I} \sigma_i$.

An inclusion-exclusion formula for the duality function

- Let Σ_{*} be the set of labelled acyclic digraphs with exactly one source.
- ▶ If $(G, m) \in \Sigma_*$ and $\{\sigma_1, ..., \sigma_n\}$ is the set of strings of G, we define

$$\mathcal{H}(\mathcal{G},y) := \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} y^{m(\sigma_I)},$$

where $m(\sigma_I) := \text{sum of the marks of all nodes covered by } \sigma_I = \bigcup_{i \in I} \sigma_i$.

Proposition

For each $\mathcal{T} \in \Upsilon$ and $y \in [0,1]$, we have

$$H(\mathcal{T}, y) = \mathcal{H}(\rho(\mathcal{T}), y).$$

Definition

The line-counting digraph process is the continuous time Markov chain $\mathcal{G}:=(\mathcal{G}(t))_{t\geq 0}$ with values in $\Sigma_*\cup\{\bowtie\}$, defined by $\mathcal{G}(t)=\rho(\mathcal{T}^*(t)),\ t\geq 0.$

Definition

The line-counting digraph process is the continuous time Markov chain $\mathcal{G}:=(\mathcal{G}(t))_{t\geq 0}$ with values in $\Sigma_*\cup\{\bowtie\}$, defined by $\mathcal{G}(t)=\rho(\mathcal{T}^*(t)),\ t\geq 0.$

▶ The line-counting digraph process \mathcal{G} is in duality with the deterministic process $1 - z(\cdot, z_0)$ w.r.t \mathcal{H} .

Definition

The line-counting digraph process is the continuous time Markov chain $\mathcal{G}:=(\mathcal{G}(t))_{t\geq 0}$ with values in $\Sigma_*\cup\{\bowtie\}$, defined by $\mathcal{G}(t)=\rho(\mathcal{T}^*(t)),\ t\geq 0.$

- ▶ The line-counting digraph process \mathcal{G} is in duality with the deterministic process $1 z(\cdot, z_0)$ w.r.t \mathcal{H} .
- ▶ The transitions of \mathcal{T}^* can be translated in a natural way to transitions of \mathcal{G} .

Definition

The line-counting digraph process is the continuous time Markov chain $\mathcal{G}:=(\mathcal{G}(t))_{t\geq 0}$ with values in $\Sigma_*\cup\{\bowtie\}$, defined by $\mathcal{G}(t)=\rho(\mathcal{T}^*(t)),\ t\geq 0.$

- ▶ The line-counting digraph process \mathcal{G} is in duality with the deterministic process $1 z(\cdot, z_0)$ w.r.t \mathcal{H} .
- ▶ The transitions of \mathcal{T}^* can be translated in a natural way to transitions of \mathcal{G} .
- $ightharpoonup \mathcal{G}$ can be constructed independently of \mathcal{T}^* .

Let T_{\odot} be the time to absorption of \mathcal{T}^* at \bigcirc and set $a_0(t) = P(T_{\odot} \leq t)$.

Let T_{\odot} be the time to absorption of \mathcal{T}^* at 0 and set $a_0(t) = P(T_{\odot} \leq t)$.

Corollary

For $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=\sum_{k=0}^{\infty}a_k(t)(1-z_0)^k,$$

Let T_{\odot} be the time to absorption of \mathcal{T}^* at \bigcirc and set $a_0(t) = P(T_{\odot} \leq t)$.

Corollary

For $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=\sum_{k=0}^{\infty}a_k(t)(1-z_0)^k,$$

$$ightharpoonup a_0'(t) = u_1 a_1(t),$$

Let T_{\odot} be the time to absorption of \mathcal{T}^* at \bigcirc and set $a_0(t)=P(T_{\odot}\leq t).$

Corollary

For $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=\sum_{k=0}^{\infty}a_k(t)(1-z_0)^k,$$

- $ightharpoonup a_0'(t) = u_1 a_1(t),$
- $a'_1(t) = 2u_1a_2(t) (\alpha(\beta \gamma) + u)a_1(t),$

Let T_{\odot} be the time to absorption of \mathcal{T}^* at \bigcirc and set $a_0(t) = P(T_{\odot} \leq t)$.

Corollary

For $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=\sum_{k=0}^{\infty}a_k(t)(1-z_0)^k,$$

- $ightharpoonup a'_0(t) = u_1 a_1(t),$
- $a_1'(t) = 2u_1a_2(t) (\alpha(\beta \gamma) + u)a_1(t)$,
- $a_2'(t) = 3u_1a_3(t) 2(\alpha(\beta \gamma) + u)a_2(t) + (\alpha(\beta + 2\gamma))a_1(t),$

Let T_{\odot} be the time to absorption of \mathcal{T}^* at \bigcirc and set $a_0(t) = P(T_{\odot} \leq t)$.

Corollary

For $z_0 \in (0,1)$, we have

$$1-z(t,z_0)=\sum_{k=0}^{\infty}a_k(t)(1-z_0)^k,$$

- $ightharpoonup a_0'(t) = u_1 a_1(t),$
- $a_1'(t) = 2u_1a_2(t) (\alpha(\beta \gamma) + u)a_1(t),$
- $a_2'(t) = 3u_1a_3(t) 2(\alpha(\beta \gamma) + u)a_2(t) + (\alpha(\beta + 2\gamma))a_1(t),$
- ▶ $a'_k(t) = (k+1)u_1a_{k+1}(t) k(\alpha(\beta-\gamma)+u)a_k(t),$ $+(k-1)(\alpha(\beta+2\gamma))a_{k-1}(t) - (k-2)\alpha\gamma a_{k-2}(t), k \ge 3.$

ullet Set $h_0=1$, $h_\infty=0$ and

$$\label{eq:hk} \textit{h}_{\textit{k}} := \textit{P}\left(\textit{T}_{\odot} < \infty | \mathcal{T}^*(0) = \overbrace{\textit{k}}\right), \quad \textit{k} \geq 1.$$

ullet Set $h_0=1$, $h_\infty=0$ and

$$h_k := P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = \overbrace{k}\right), \quad k \geq 1.$$

• A first step analysis leads to

$$\begin{split} (u + \alpha(\beta - \gamma))h_k &= \alpha\beta h_{k+1} + u\nu_1 h_{k-1} \\ &- \alpha\gamma P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = \underbrace{k} \otimes \underbrace{1} \otimes \underbrace{1}\right). \end{split}$$

ullet Set $h_0=1$, $h_\infty=0$ and

$$h_k := P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = \overbrace{k}\right), \quad k \geq 1.$$

• A first step analysis leads to

$$(u + \alpha(\beta - \gamma))h_k = \alpha\beta h_{k+1} + u\nu_1 h_{k-1} - \alpha\gamma P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = (k) \otimes (1) \otimes (1)\right).$$

• One can show that

$$P\left(T_{\odot}<\infty|\mathcal{T}^{*}(0)=\cancel{k}\otimes\cancel{1}\otimes\cancel{1}\right)=h_{k}(2h_{1}-h_{1}^{2}),$$

ullet Set $h_0=1$, $h_\infty=0$ and

$$h_k := P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = \overbrace{k}\right), \quad k \geq 1.$$

• A first step analysis leads to

$$(u + \alpha(\beta - \gamma))h_k = \alpha\beta h_{k+1} + u\nu_1 h_{k-1} - \alpha\gamma P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = (k) \otimes (1) \otimes (1)\right).$$

• One can show that

$$P\left(T_{\odot}<\infty|\mathcal{T}^{*}(0)=\widehat{k}\otimes\widehat{1}\otimes\widehat{1}\right)=h_{k}(2h_{1}-h_{1}^{2}),$$

 $\Rightarrow h_1$ is the root in [0,1] of a cubic polynomial.

ullet Set $h_0=1$, $h_\infty=0$ and

$$h_k := P\left(T_{\circledcirc} < \infty | \mathcal{T}^*(0) = \overbrace{k}\right), \quad k \geq 1.$$

• A first step analysis leads to

$$(u + \alpha(\beta - \gamma))h_k = \alpha\beta h_{k+1} + u\nu_1 h_{k-1} - \alpha\gamma P\left(T_{\odot} < \infty | \mathcal{T}^*(0) = (k) \otimes (1) \otimes (1)\right).$$

• One can show that

$$P\left(T_{\odot}<\infty|\mathcal{T}^{*}(0)=\widehat{k}\otimes\widehat{1}\otimes\widehat{1}\right)=h_{k}(2h_{1}-h_{1}^{2}),$$

 $\Rightarrow h_1$ is the root in [0,1] of a cubic polynomial.

• Duality $\Rightarrow h_1 =$ stationary proportion of 1's in the forward model.

Thank you for your attention!