Furstenberg's conjecture on intersections of Cantor sets, and self-similar measures

Pablo Shmerkin

Department of Mathematics and Statistics Universidad T. Di Tella and CONICET

Santiago, 07.12.2016

Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1x_2... = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, ..., p-1\}.$$

Basic facts:

- All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
- A point is rational if and only if the expansion is eventually periodic.
- 3 Expansions in bases p^n and p^k are "almost the same" (look at base p in blocks of length n and k).

Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1x_2... = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, ..., p-1\}.$$

Basic facts:

- All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
- A point is rational if and only if the expansion is eventually periodic.
- ② Expansions in bases p^n and p^k are "almost the same" (look at base p in blocks of length n and k).

Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point x has an expansion to base p:

$$x = 0.x_1x_2... = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, ..., p-1\}.$$

Basic facts:

- All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
- A point is rational if and only if the expansion is eventually periodic.
- **3** Expansions in bases p^n and p^k are "almost the same" (look at base p in blocks of length n and k).

Multiplication by p

Definition

For $p \in \mathbb{N}_{\geq 2}$, let

$$T_p = px \mod 1$$

be multiplication by *p* on the circle.

Symbolically, $T_p x$ corresponds to shifting the p-ary expansion x: there is a factor map, which is one-to-one outside of the countably many points with two p-ary expansions.

Multiplying by 2 and by 3: the founding father

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Objective to the property of the property o
- \bigcirc ×2,×3, rigidity of higher order actions.
- Fractal geometry ∩ ergodic theory (CP-processes, ...).

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Disjointness of dynamical systems.
- \bigcirc ×2, ×3, rigidity of higher order actions.
- ⑤ Fractal geometry ∩ ergodic theory (CP-processes, ...).

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Disjointness of dynamical systems.
- ×2, ×3, rigidity of higher order actions.
- ⑤ Fractal geometry ∩ ergodic theory (CP-processes, ...).

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Disjointness of dynamical systems.
- $5 \times 2, \times 3$, rigidity of higher order actions.
- ⑤ Fractal geometry ∩ ergodic theory (CP-processes, ...).

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Disjointness of dynamical systems.
- $5 \times 2, \times 3$, rigidity of higher order actions.
- ⑤ Fractal geometry ∩ ergodic theory (CP-processes, ...).

- Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
- Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
- Unique ergodicity of horocycle flow, toral maps, ...
- Disjointness of dynamical systems.
- \bullet ×2, ×3, rigidity of higher order actions.
- Fractal geometry ∩ ergodic theory (CP-processes, ...).

Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure.

More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, log p/log q is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of "no common structure".

Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure. More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, log p/log q is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of "no common structure".

Definition

- If p and q are coprime, then $\{0, 1/q, \dots, (q-1)/q\}$ is T_p -invariant.
- [0,1) is T_p -invariant.
- Let $D \subset \{0, 1, \dots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p -invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.

Definition

- If p and q are coprime, then $\{0, 1/q, \dots, (q-1)/q\}$ is T_p -invariant.
- [0,1) is T_p -invariant.
- Let $D \subset \{0, 1, \dots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p -invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.

Definition

- If p and q are coprime, then $\{0,1/q,\ldots,(q-1)/q\}$ is \mathcal{T}_p -invariant.
- [0,1) is T_p -invariant.
- Let $D \subset \{0, 1, \dots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p -invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.

Definition

- If p and q are coprime, then $\{0, 1/q, \dots, (q-1)/q\}$ is T_p -invariant.
- [0,1) is T_p -invariant.
- Let $D \subset \{0, 1, \dots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p -invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.

Definition

- If p and q are coprime, then $\{0, 1/q, \dots, (q-1)/q\}$ is T_p -invariant.
- [0,1) is T_p -invariant.
- Let $D \subset \{0, 1, \dots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p -invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2 , T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3 , then A is either finite or the whole circle [0,1).

- The theorem is a weak confirmation of the principle since the sex A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2 , T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3 , then A is either finite or the whole circle [0,1).

- The theorem is a weak confirmation of the principle since the se
 - A and itself certainly have a lot of common structure!
 - One should think of finite sets and the whole circle as sets "without structure".

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2 , T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3 , then A is either finite or the whole circle [0,1).

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2 , T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3 , then A is either finite or the whole circle [0,1).

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2 , T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3 , then A is either finite or the whole circle [0,1).

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite.
- If x es irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

Observation

- If x is rational, then the orbit $\{T_2^nT_3^mx\}_{n,m=1}^{\infty}$ is infinite.
- If x es irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite.
- If x es irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite.
- If x es irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

"The" ×2, ×3 Furstenberg conjecture

Definition

A Borel probability measure μ on [0, 1) is T_p -invariant if

$$\mu(B) = \mu(T_p^{-1}B)$$
 for all Borel sets B .

Conjecture (Furstenberg 1967)

If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.

"The" ×2, ×3 Furstenberg conjecture

Definition

A Borel probability measure μ on [0, 1) is T_p -invariant if

$$\mu(B) = \mu(T_p^{-1}B)$$
 for all Borel sets B .

Conjecture (Furstenberg 1967)

If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.

How to quantify "shared structure"

- Furstenberg's Theorem says that non-trivial T₂ and T₃ invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
- Ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
- ⊚ Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$A + B = \{a + b : a \in A, b \in B\}$$

to be "as large as possible" and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be "as small as possible".

How to quantify "shared structure"

- Furstenberg's Theorem says that non-trivial T₂ and T₃ invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
- Ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
- ③ Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$A + B = \{a + b : a \in A, b \in B\}$$

to be "as large as possible" and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be "as small as possible".

How to quantify "shared structure"

- Furstenberg's Theorem says that non-trivial T₂ and T₃ invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
- Ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
- **3** Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$A+B=\{a+b:a\in A,b\in B\}$$

to be "as large as possible" and the intersection $A \cap B$ and $A \cap (\lambda B + t)$ to be "as small as possible".

Hausdorff Dimension

 Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

$$\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \cup_i B(x_i, r_i) \right\} = 0 \right\}$$

- Gives a notion of "size" for sets in \mathbb{R}^d , varies between 0 and d, gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size $\log 2/\log 3$ to the middle-thirds Cantor set,...
- If $A \subset \mathbb{T}$ is T_p -invariant, then $\dim_H A = h_{top}(A)/\log p$.
- If $A = A_{p,D}$ is a p-Cantor set, then $\dim_H A = \log |D|/\log p$.

Hausdorff Dimension

 Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

$$\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \cup_i B(x_i, r_i) \right\} = 0 \right\}$$

- Gives a notion of "size" for sets in \mathbb{R}^d , varies between 0 and d, gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size $\log 2/\log 3$ to the middle-thirds Cantor set,...
- If $A \subset \mathbb{T}$ is T_p -invariant, then $\dim_H A = h_{top}(A)/\log p$.
- If $A = A_{p,D}$ is a p-Cantor set, then $\dim_H A = \log |D|/\log p$.

Hausdorff Dimension

 Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

$$\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \cup_i B(x_i, r_i) \right\} = 0 \right\}$$

- Gives a notion of "size" for sets in \mathbb{R}^d , varies between 0 and d, gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size $\log 2/\log 3$ to the middle-thirds Cantor set,...
- If $A \subset \mathbb{T}$ is T_p -invariant, then $\dim_H A = h_{top}(A)/\log p$.
- If $A = A_{p,D}$ is a p-Cantor set, then $\dim_H A = \log |D| / \log p$.

Hausdorff Dimension

 Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

$$\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \cup_i B(x_i, r_i) \right\} = 0 \right\}$$

- Gives a notion of "size" for sets in \mathbb{R}^d , varies between 0 and d, gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size $\log 2/\log 3$ to the middle-thirds Cantor set,...
- If $A \subset \mathbb{T}$ is T_p -invariant, then $\dim_H A = h_{top}(A)/\log p$.
- If $A = A_{p,D}$ is a p-Cantor set, then $\dim_H A = \log |D|/\log p$.

In all conjectures, p, q are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

 $\dim_H(A+B) = \max(\dim_H(A) + \dim_H(B), 1)$

In all conjectures, *p*, *q* are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

$$\dim_H(A+B)=\max(\dim_H(A)+\dim_H(B),1).$$

- One "typically" expects the formula above to hold. For example for arbitrary sets A, B it holds* that
 - $\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1)$ for almost all $\lambda \in \mathbb{R}$
- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

In all conjectures, p, q are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

$$\dim_H(A+B)=\max(\dim_H(A)+\dim_H(B),1).$$

Motivation

$$\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1)$$
 for almost all $\lambda \in \mathbb{R}$

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

In all conjectures, p, q are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

$$\dim_H(A+B)=\max(\dim_H(A)+\dim_H(B),1).$$

Motivation

$$\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1)$$
 for almost all $\lambda \in \mathbb{R}$.

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

In all conjectures, *p*, *q* are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

$$\dim_H(A+B)=\max(\dim_H(A)+\dim_H(B),1).$$

Motivation

$$\dim_{H}(A+\lambda B)=\max(\dim_{H}(A)+\dim_{H}(B),1) \text{ for almost all } \lambda\in\mathbb{R}.$$

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

In all conjectures, *p*, *q* are rationally independent (not powers of a common integer). E.g. 2 and 3, or 6 and 12 (but not 8 and 16).

Conjecture 1

Let A, B be closed and T_p , T_q invariant. Then

$$\dim_H(A+B)=\max(\dim_H(A)+\dim_H(B),1).$$

Motivation

$$\dim_H(A + \lambda B) = \max(\dim_H(A) + \dim_H(B), 1)$$
 for almost all $\lambda \in \mathbb{R}$.

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

Solution to Furstenberg's sumset conjecture

Theorem (Y.Peres-P.S. 2009, F. Nazarov-Y.Peres-P.S. 2012)

If A, B are a p-Cantor set and a q-Cantor set, then

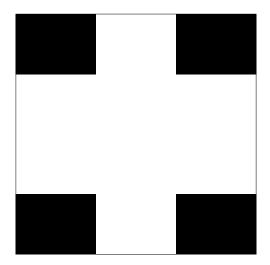
$$\dim_H(A + \lambda B) = \min(\dim_H(A) + \dim_H(B), 1)$$
 for all $\lambda \in \mathbb{R} \setminus \{0\}$.

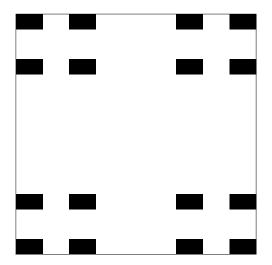
Solution to Furstenberg's sumset conjecture

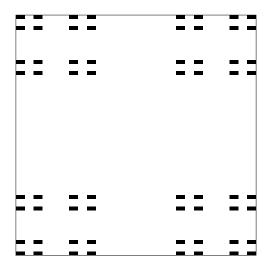
Theorem (M.Hochman-P.S. 2012)

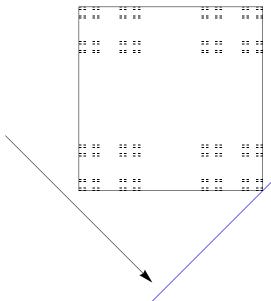
If A, B are closed and T_p , T_q -invariant, then

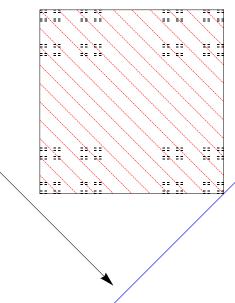
 $\dim_H(A + \lambda B) = \min(\dim_H(A) + \dim_H(B), 1)$ for all $\lambda \in \mathbb{R} \setminus \{0\}$.











More general notions of shared structure?

I argued that if

$$\dim_H(A+B)<\min(\dim_H(A)+\dim_H(B),1),$$

then A and B have "common structure" at many scales.

 But the opposite is far from true! For many ("most") sets A, even of dimension ≤ 1/2, even T_p-invariant ones,

$$dim_H(A+A) = \min(2\dim_H(A), 1).$$

 A stronger notion of shared structure is given by the size of intersections. For example, A ∩ A is always larger than "expected" (if dim_H(A) > 0).

More general notions of shared structure?

I argued that if

$$\dim_H(A+B)<\min(\dim_H(A)+\dim_H(B),1),$$

then A and B have "common structure" at many scales.

 But the opposite is far from true! For many ("most") sets A, even of dimension ≤ 1/2, even T_p-invariant ones,

$$dim_H(A+A)=\min(2\dim_H(A),1).$$

 A stronger notion of shared structure is given by the size of intersections. For example, A ∩ A is always larger than "expected" (if dim_H(A) > 0).

More general notions of shared structure?

I argued that if

$$\dim_H(A+B)<\min(\dim_H(A)+\dim_H(B),1),$$

then A and B have "common structure" at many scales.

 But the opposite is far from true! For many ("most") sets A, even of dimension ≤ 1/2, even T_p-invariant ones,

$$dim_H(A+A)=\min(2\dim_H(A),1).$$

 A stronger notion of shared structure is given by the size of intersections. For example, A ∩ A is always larger than "expected" (if dim_H(A) > 0).

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p , T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A\cap f(B))\leq \max(\dim_H(A)+\dim_H(B)-1,0).$$

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the "average size" of an intersection.
- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset A + B is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p , T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A\cap f(B))\leq \max(\dim_H(A)+\dim_H(B)-1,0).$$

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the "average size" of an intersection.
- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset A + B is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p , T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the "average size" of an intersection.
- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset A + B is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_p , T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$

- It is known that for arbitrary sets A, B one cannot do better than the right-hand side. Counting heuristics show that the RHS is the "average size" of an intersection.
- Conjecture 2 is far stronger than Conjecture 1. Heuristically, the sumset A + B is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Previous results on Furstenberg's conjecture

Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if $\dim_H(A) + \dim_H(B) \le 1/2$. More generally, one always has

$$\dim_H(A\cap f(B))\leq \max(\dim_H(A)+\dim_H(B)-1/2,0).$$

Remark

No example of invariant sets A, B for which the conjecture holds with $\dim_H(A) + \dim_H(B) > 1/2$ were known.

Previous results on Furstenberg's conjecture

Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if $\dim_H(A) + \dim_H(B) \le 1/2$. More generally, one always has

$$\dim_H(A\cap f(B))\leq \max(\dim_H(A)+\dim_H(B)-1/2,0).$$

Remark

No example of invariant sets A, B for which the conjecture holds with $\dim_H(A) + \dim_H(B) > 1/2$ were known.

Solution to Furstenberg's conjecture 2

Theorem (P.S. 2016)

Furstenberg's conjecture 2 holds.

Remark

Meng Wu (University of Oulu, Finland) independently found another proof. The proofs are completely different. Wu's proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai's factor theorem.

Solution to Furstenberg's conjecture 2

Theorem (P.S. 2016)

Furstenberg's conjecture 2 holds.

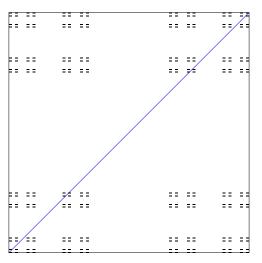
Remark

Meng Wu (University of Oulu, Finland) independently found another proof. The proofs are completely different. Wu's proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai's factor theorem.

More pictures!

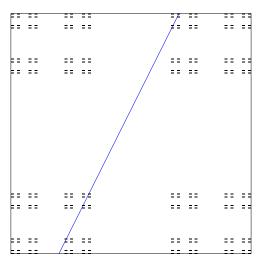
Our old friend again: $A \times B$.

More pictures!



 $A \times B \cap \text{diagonal} = A \cap B$.

More pictures!



 $A \times B \cap$ any line $= A \cap$ affine image of B.

A corollary on subsets of integers

Corollary

Let A be the natural numbers with digits 0,3 in base 4, and B the natural numbers with digits 1,2,7 in base 10. Then

$$\lim_{n\to\infty}\frac{\log|A\cap B\cap\{1,\ldots,n\}|}{\log n}=0,$$

in other words, given $\varepsilon > 0$,

$$|A \cap B \cap \{1, \dots, n\}| \le n^{\varepsilon}$$
 for n large enough.

Question (Related to another conjecture of Furstenberg)

Is $A \cap B$ *finite?*

A corollary on subsets of integers

Corollary

Let A be the natural numbers with digits 0,3 in base 4, and B the natural numbers with digits 1,2,7 in base 10. Then

$$\lim_{n\to\infty}\frac{\log|A\cap B\cap\{1,\ldots,n\}|}{\log n}=0,$$

in other words, given $\varepsilon > 0$,

$$|A \cap B \cap \{1, \dots, n\}| \le n^{\varepsilon}$$
 for n large enough.

Question (Related to another conjecture of Furstenberg)

Is $A \cap B$ *finite?*

- Additive combinatorics: an inverse theorem for the L^q norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
- Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
- Multifractal analysis (L^q spectrum, regularity at points of differentiability).
- General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

- Additive combinatorics: an inverse theorem for the L^q norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
- Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
- Multifractal analysis (L^q spectrum, regularity at points of differentiability).
- General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

- Additive combinatorics: an inverse theorem for the L^q norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
- Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
- Multifractal analysis (L^q spectrum, regularity at points of differentiability).
- General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

- Additive combinatorics: an inverse theorem for the L^q norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
- Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
- Multifractal analysis (L^q spectrum, regularity at points of differentiability).
- General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

Reduction to a problem in multifractal analysis

- By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p-1\}, D_2 \subset \{0, 1, \ldots, q-1\}$).
- There are natural measures μ , ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).
- Let

$$\eta_t = \mu * S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

• Given a probability measure η on [0, 1], let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{l \in \mathcal{D}_n} \mu(l)^q.$$

Reduction to a problem in multifractal analysis

- By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p-1\}, D_2 \subset \{0, 1, \ldots, q-1\}$).
- There are natural measures μ , ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).
- Let

$$\eta_t = \mu * S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

• Given a probability measure η on [0, 1], let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{l \in \mathcal{D}_n} \mu(l)^q.$$

Reduction to a problem in multifractal analysis

- By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p-1\}, D_2 \subset \{0, 1, \ldots, q-1\}$).
- There are natural measures μ , ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).
- Let

$$\eta_t = \mu * S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

• Given a probability measure η on [0, 1], let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{l \in \mathcal{D}_n} \mu(l)^q.$$

Reduction to a problem in multifractal analysis

- By a standard argument, it is enough to prove the theorem when A, B are a p-Cantor set and a q-Cantor set respectively (with digit sets $D_1 \subset \{0, 1, \ldots, p-1\}, D_2 \subset \{0, 1, \ldots, q-1\}$).
- There are natural measures μ , ν on A, B (Hausdorff measure, measure of maximal entropy, they all agree).
- Let

$$\eta_t = \mu * S_t \nu$$

where $S_t x = tx$ scales by x. Alternatively, η_t is the push-down measure of $\mu \times \nu$ under the linear projection $(x, y) \mapsto x + ty$.

• Given a probability measure η on [0, 1], let

$$D_q(\mu) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{I \in \mathcal{D}_n} \mu(I)^q.$$

Multifractal analysis → intersections I

$$D_q(\eta) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{I \in \mathcal{D}_n} \eta(I)^q.$$
 $\eta_t = \mu * \mathcal{S}_t \nu$

Theorem (P.S. 2016)

For all $t \neq 0$,

$$D_q(\eta_t) = \min(\dim_H(A) + \dim_H(B), 1)$$
 for all $q > 1$.

Remark

The theorem says that η_t is very uniformly distributed in its support A+tB with no points of "larger than expected" mass.

Multifractal analysis → intersections I

$$D_q(\eta) = \lim_{n \to \infty} \frac{1}{n(1-q)} \log \sum_{I \in \mathcal{D}_n} \eta(I)^q.$$

$$\eta_t = \mu * \mathcal{S}_t \nu$$

Theorem (P.S. 2016)

For all $t \neq 0$,

$$D_q(\eta_t) = \min(\dim_H(A) + \dim_H(B), 1)$$
 for all $q > 1$.

Remark

The theorem says that η_t is very uniformly distributed in its support A+tB with no points of "larger than expected" mass.

Multifractal analysis → intersections II

Proof of Furstenberg's conjecture assuming theorem.

Let

$$s = \dim_H(A) + \dim_H(B) = \dim_H(A \times B).$$

Suppose

$$d = \dim_H(A \cap (tB + u)) > \min(s - 1, 0)$$

Let $u \in I \in \mathcal{D}_n$ with $n \gg 1$. Then, writing P(x, y) = x + ty, we have $A \cap (tB + u) \subset P^{-1}(I)$ so that

$$\eta_t(I) = (\mu \times \nu)(P^{-1}(I)) \gtrsim 2^{dn}2^{-sn}.$$

It follows that

$$2^{\min(s,1)(1-q)n} \geq \sum_{I \in \mathcal{D}_{-}} \eta_{X}(I)^{q} \gtrsim \left(2^{dn}2^{-sn}\right)^{q}.$$

This is a contradiction if *q* is large enough.

Self-similarity

$$\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n}$$

with X_n , Y_n independent and uniform in D_1 , D_2 respectively.

$$\eta_t = \mu * S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} t Y_m q^{-m}.$$

• One can rearrange terms to find out η_t has a dynamical self-similar structure:

$$\eta_t = \Delta(t) * \eta_{\sigma(t)}$$

where: $\Delta(t)$ is a finitely supported measure, and σ is a uniquely ergodic transformation of some interval.

Self-similarity

$$\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n}$$

with X_n , Y_n independent and uniform in D_1 , D_2 respectively.

$$\eta_t = \mu * S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} t Y_m q^{-m}.$$

• One can rearrange terms to find out η_t has a dynamical self-similar structure:

$$\eta_t = \Delta(t) * \eta_{\sigma(t)}$$

where: $\Delta(t)$ is a finitely supported measure, and σ is a uniquely ergodic transformation of some interval.

Self-similarity

$$\mu \sim \sum_{n=1}^{\infty} X_n p^{-n}, \quad \nu \sim \sum_{n=1}^{\infty} Y_n q^{-n}$$

with X_n , Y_n independent and uniform in D_1 , D_2 respectively.

$$\eta_t = \mu * S_t \nu \sim \sum_{n=1}^{\infty} X_n p^{-n} + \sum_{m=1}^{\infty} t Y_m q^{-m}.$$

• One can rearrange terms to find out η_t has a dynamical self-similar structure:

$$\eta_t = \Delta(t) * \eta_{\sigma(t)}$$

where: $\Delta(t)$ is a finitely supported measure, and σ is a uniquely ergodic transformation of some interval.

If (η_t) is a family of "dynamical self-similar measures" where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

 $D_q(\eta_t) = what you expect for all t and q > 1.$

Remark

As corollaries of this theorem, beyond Furstenberg's conjecture I get applications to:

- The dimensions and densities of self-similar measures, including Bernoulli convolutions,
- The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

If (η_t) is a family of "dynamical self-similar measures" where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

 $D_q(\eta_t) = what you expect for all t and q > 1.$

Remark

As corollaries of this theorem, beyond Furstenberg's conjecture I get applications to:

- The dimensions and densities of self-similar measures, including Bernoulli convolutions,
- The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

If (η_t) is a family of "dynamical self-similar measures" where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

 $D_q(\eta_t) = what you expect for all t and q > 1.$

Remark

As corollaries of this theorem, beyond Furstenberg's conjecture I get applications to:

- The dimensions and densities of self-similar measures, including Bernoulli convolutions,
- The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

If (η_t) is a family of "dynamical self-similar measures" where the driving dynamics is uniquely ergodic + some regularity hypotheses, then

 $D_q(\eta_t) = what you expect for all t and q > 1.$

Remark

As corollaries of this theorem, beyond Furstenberg's conjecture I get applications to:

- The dimensions and densities of self-similar measures, including Bernoulli convolutions,
- The dimensions of slices of many self-similar fractals in the plane including the 1-dimensional Sierpiński gasket (improving another conjecture of Furstenberg).

Slices of the 1-dim Sierpiński Gasket

Theorem (Hochman, settling a conjecture of Furstenberg)

All orthogonal projections with irrational slope have dimension 1.

Theorem (P.S. 2016)

All slices with irrational slope have dimension 0

Slices of the 1-dim Sierpiński Gasket

```
h h h h h h h h h h
```

Theorem (Hochman, settling a conjecture of Furstenberg)

All orthogonal projections with irrational slope have dimension 1.

Theorem (P.S. 2016)

All slices with irrational slope have dimension 0.

¡¡¡Muchas gracias!!!