Variations on the Luria-Delbrück model

Thierry Huillet, LPTM Cergy, France

- [1] Luria; Delbrück. Mutations of bacteria: from virus sensitivity to virus resistance. Genetics. 1943.
- [2] Lea; Coulson. The distribution of the numbers of mutants in bacterial populations. J. of Gen. 1949.
- [3] Keller; Antal. Mutant number distribution in an exponentially growing population. JStatMech. 2015.
- [4] Dewanji et al. A generalized Luria-Delbrück model. Math Biosci. 2005.
- [5] Iwasa et al. Evolution of resistance during clonal expansion. Genetics 172(4), 2006.
- [6] Simon. On a class of skew distribution functions. Biometrika. 1955
- [7] far from exhaustive

IRS Santiago, December 5, 2016

◆□ → ◆□ → ◆ □ → ◆ □ → り へ ○

Intro

Luria-Delbrück experiment (Fluctuation Test): genetic mutations of bacteria arise permanently, even in absence of selection, rather than being a response to selection. Mutations do not occur out of necessity (Lamarck), but instead can occur many generations before the selection strikes (Darwin).

Sensitive population (# x_t at t) immune as soon as (i) $N_t > 0$ (# N_t of mutants) or (ii) $N_t > ax_t$.

Lamarck. t instant of viral attack, each of x_t sensitive individuals has proba p to switch instantaneously to a mutant state in response. # N_t of mutants: $N_t \sim \text{bin}(x_t, p)$ mean $\mathbf{E}N_t = x_t p$ and variance $\sigma^2(N_t) = x_t p(1-p)$

- -If $x_t \uparrow$, $\mathbf{P}(N_t > 0) = 1 (1 p)^{x_t} \to 1$: population will become increasingly immune based on (i).
- $N_t/x_t \stackrel{\text{a.s.}}{\rightarrow} p$ and $p > a \Rightarrow$ population asymptotically immune, based on (ii).
- $-x_t \to \infty$ and $p \to 0$ while $x_t p = \overline{\theta}$ (LPSM *-limit) : $N_t \stackrel{*}{\to} N_{\infty} \sim Poi(\overline{\theta})$, mean=variance.

Darwin-Luria-Delbrück version of this model: more complicated intertwining of $(x_t; N_t)$. In such process, the Yule and Simon distribution pops in.

I PTM

Simon tail index larger than 1

Naturalist daily records sampled species and occurrences. n campaigns: $N_n(k) = \#$ of species sampled k times, $P_n = \sum_{k=1}^n N_n(k)$, # distinct species discovered. Means:

 $x_n(k)$ and p_n . Step n to n+1:

- proba. ρ : sample new species, $N_{n+1}(1) = N_n(1) + 1$, $P_n \sim bin(n, \rho)$, $\mathbf{E}P_n = p_n = n\rho$.
- With proba. 1ρ , outcome of $(n+1)^{\text{th}}$ campaign is species already visited: species k with proba. $kN_n(k)/n$ (reinforcement enhancing species visited often, PA).

$$x_{n+1}(k) = x_n(k) + (1-\rho)(k-1)x_n(k-1)/n - (1-\rho)kx_n(k)/n \text{ if } k \neq 1$$

 $\alpha = 1/(1-\rho) > 1$, solutions are $x_n(k) = nx(k)$ with $x(k) = \rho \alpha B(k, \alpha + 1)$. Simon:

$$q_{k} \coloneqq x_{n}(k)/p_{n} = x(k)/\rho = \alpha B(k, \alpha + 1), \ k \ge 1$$
 (1)

 $q_k \underset{k \to \infty}{\sim} \alpha \Gamma(\alpha + 1) k^{-(\alpha + 1)}$. Obeys $q_{k+1}/q_k = k/(k + \alpha + 1)$, $q_1 = \alpha/(\alpha + 1)$. Pgf:

$$\sum_{k>1} q_k z^k = \frac{\alpha z}{\alpha + 1} F\left(1, 1; 2 + \alpha; z\right) =: F_S\left(z\right). \tag{2}$$

$$F_{S}(z) = \alpha \int_{0}^{\infty} d\tau \cdot e^{-\alpha \tau} \frac{e^{-\tau}z}{1 - (1 - e^{-\tau})z} \text{ or } q_{k} = \alpha \int_{0}^{\infty} d\tau \cdot e^{-\alpha \tau} e^{-\tau} (1 - e^{-\tau})^{k-1}.$$
 (3)

$$N_n(k)/P_n \stackrel{\text{proba}}{\to} q_k$$

(4) ←□→←□→←≧→←≧→ ≧ ∽Q♡

Simon tail index smaller than 1 but rational

Consider a new \mathbb{N}_0 -valued rv, say \overline{C} , $\alpha > 0$, now with pgf

$$\mathbf{E}\left(z^{\overline{C}}\right) = \frac{\alpha}{\alpha+1}F\left(1,1;2+\alpha;z\right).$$

In class of 3-parameters hypergeometric family of pgfs studied in Dacey. When $\alpha < 1$ and α is a rational number, \overline{C} has a Pólya-Eggenberger urn model interpretation: Take an urn with initially b black balls and w > b white balls. Balls are drawn at random one at a time from the urn and each selected ball is returned to the urn along with r-1 additional balls of the same color, $r \ge 2$. Repeat sampling procedure. Suppose number of balls returned is r=w and put $\alpha:=b/r<1$.

CLAIM: \overline{C}_{α} represents the number of white balls that are drawn till the first black ball is selected in the sampling process.

With
$$\overline{q}_k := \mathbf{P}(\overline{C} = k)$$
, $k \ge 0$, $\overline{q}_{k+1}/\overline{q}_k = (k+1)/(k+\alpha+2)$, $\overline{q}_0 = \alpha/(\alpha+1)$.

$$\overline{q}_k = \alpha B(k+1, \alpha+1), k \ge 0.$$

The distribution of $\overline{C} = C - 1$ is the distribution of a shifted YS distribution with $\overline{q}_k = q_{k+1}$. Reinforcement entails heavy-tailed with index α .

◆ロ > ← (回) ◆ (重) ◆ (重) ◆ (重) ◆ (回) ◆ (u) ◆ (u

digression: Sibuya?

Link with Sibuya(α)? $C \ge 1$ integer-valued rv

$$C = \inf (I \geq 1 : \mathcal{B}_{\alpha}(I) = 1),$$

 $(\mathcal{B}_{\alpha}(I))_{I\geq 1}$ sequence of independent Bernoulli rvs obeying $\mathbf{P}(\mathcal{B}_{\alpha}(I)=1)=\alpha/I$, $\alpha\in(0,1)$. First epoch of a success in a Bernoulli trial with probab. of success inversely proportional to the number of the trial.

$$q_k = \mathbf{P}(C = k) = (-1)^{k-1} {\alpha \choose k} = \alpha [\overline{\alpha}]_{k-1} / k!, \ k \ge 1.$$

Heavy tails: $q_k \sim \alpha k^{-(\alpha+1)}/\Gamma(1-\alpha)$ and $q_{k+1}/q_k = (k-\alpha)/(k+1)$, $q_1 = \alpha$.

pgf:
$$\varphi(z) := \mathbf{E}(z^{C}) = 1 - (1 - z)^{\alpha} = \alpha z F(1, 1 - \alpha; 2; z), z \le 1.$$

Scale-free: with $u \circ C$, Bernoulli(u)-thinning of C, C solves (fixed point of)

$$\forall u \in (0,1), (u \circ C \mid u \circ C \geq 1) \stackrel{d}{=} C$$

 $G(\alpha) \sim \text{gamma}(\alpha, 1), G(1), G(1-\alpha), G(\alpha) \text{ mutually } \bot, \text{ Poisson mixture (Devroye)}$

$$C \stackrel{d}{=} 1 + \text{Poi}\left(\frac{G(1) G(1-\alpha)}{G(\alpha)}\right).$$

←□ → ←□ → ← □ → ← □ → へへの

December 5th, 2016

Variations on the Luria-Delbrück model

Exponential sensitive growth: Luria-Delbrück

WT (sensitive) cells grow at rate $\lambda_t > 0$, $\Lambda_t = \int_0^t ds \cdot \lambda_s < \infty$. Size of the sensitive

$$x_t = x_0 + \Lambda_t, x_0 \ge 0.$$

Each WT cell subject to mutation, rate at which new mutants are being created, one at a time, is $\nu \lambda_t$, ν = mutation proba. of each WT cell.

Mutant population is resistant to a viral attack.

Fix [0, t]. Mutations occur at iid times $S_t^{(k)}$ law: $\mathbf{P}(S_t \in ds) = \lambda_s ds/\Lambda_t$.

There are $P(\nu\Lambda_t) \sim Poi(\nu\Lambda_t)$ such mutation events.

Once mutant is created, it grows and forms a clone.

 M_t = # mutant sub-population at t given single founder M_0 = 1. M_t grows according to BD process.

 M_t goes extinct at time τ_e : $\mathbf{P}(M_t > 0) = \mathbf{P}(\tau_e > t)$.

 $N_t = \#$ of total mutant pop., summing up all sub-populations contributions.

◆ロ > ◆回 > ◆ き > ◆き > き の 9 0

Global mutant pop. size

$$N_{t} = \sum_{k=1}^{P(\nu \Lambda_{t})} C_{t-S_{t}^{(k)}}^{(k)}.$$
 (5)

Pgf:

$$\Phi_t(z) = \mathbf{E}\left(z^{N_t}\right) = \exp\left\{-\nu \int_0^t ds \cdot \lambda_s \left(1 - \phi_{t-s}(z)\right)\right\}, \ \phi_t(z) = \mathbf{E}\left(z^{M_t}\right). \tag{6}$$

As well:

Compound Poisson:
$$N_t \stackrel{d}{=} \sum_{p=1}^{P(\nu \Lambda_t)} C_t^{(k)},$$
 (7)

 $C_t^{(k)}$ iid copies of $C_t \ge 0$, the typical clone size at t with pgf

$$\mathbf{E}\left(z^{C_t}\right) = \frac{1}{\Lambda_t} \int_0^t ds \cdot \lambda_s \phi_{t-s}\left(z\right).$$

 $C_t \rightarrow C_t^+ := C_t \mid C_t > 0.$

Two models for WT population growth: $\lambda_t = \lambda e^{\lambda t}$ and $\lambda_t = \lambda$.

→□→ →□→ → □→ → □ → りへの

Expon. growing WT pop. $(\lambda_s = \lambda e^{\lambda s})$: supercrit. mutant (r > 0), [3,4,5]

Each mutant duplicates with proba. π_2 or dies with proba. π_0

Global BD rate: $r_e > 0$, $r_b \coloneqq r_e \pi_2$, $r_s \coloneqq r_e \pi_1$ and $r_d \coloneqq r_e \pi_0$, $r_e = r_b + r_d + r_s$.

Mutant BD net rate

$$r = r_b - r_d$$
 and $\rho := \pi_0 / \pi_2 = r_d / r_b$,

 $\alpha := \lambda/r$ and $\mu := \nu \lambda (1 - \rho)/r = \nu \lambda/r_b$ scaled mutation proba.

For BD branching proc. $r \neq 0$, pgf $\phi_t(z) \coloneqq \mathbf{E}(z^{M_t})$ is $[\zeta \coloneqq (z - \rho)/(z - 1)]$

$$1 - \phi_t(z) = e^{rt} (1 - z) / (1 + r_b (e^{rt} - 1) (1 - z) / r) = (1 - \rho) / (1 - e^{-rt} \zeta), \quad (8)$$

Supercrit. (r > 0), extinction occurs with > 0 proba. at time τ_e .

$$1 - \phi_t(0) = \mathbf{P}(\tau_e > t) = e^{rt} / (1 + r_b(e^{rt} - 1)/r)$$
(9)

 $\rho = \mathbf{P}(\tau_e < \infty)$ proba. extinction of M_t . Given ext. tail of $\tau_e \sim \exp(r)$.

◆ロ > ◆昼 > ◆ き > ・ き * り へ ②

Clone size:

$$\mathbf{E}\left(z^{C_t}\right) = \Lambda_t^{-1} \int_0^t ds \lambda_s \phi_{t-s}\left(z\right) \underset{t \to \infty}{\to} \alpha \int_0^{\infty} d\tau e^{-\alpha \tau} \left(\rho - \zeta e^{-\tau}\right) / \left(\rho - \zeta e^{-\tau}\right) = \mathbf{E}\left(z^{C_{\infty}}\right)$$

CLAIM: $\mathbf{E}(z^{C_{\infty}})$ is pgf of an $\exp(\alpha)$ mixture (w.r. to parameter τ) of a linear-fractional distrib. pgf

$$\mathbf{E}\left(z^{C}\right)=b_{0}+a_{0}\frac{az}{1-bz},$$

$$(C \stackrel{d}{=} G(a) \cdot B(a_0)), G \sim geo(a) \perp B \sim ber(a_0), with success parameters (a_0 = (1 - \rho) / (1 - \rho e^{-\tau}), a = e^{-\tau} (1 - \rho) / (1 - \rho e^{-\tau})).$$

$$q_{k} = \mathbf{P}\left(C_{\infty}^{+} = k\right) = \alpha B\left(k, \alpha + 1\right)\left(1 - \rho\right) F\left(k + 1, \alpha; k + \alpha + 1; \rho\right) / \int_{0}^{1} \left(1 - \rho z^{1/\alpha}\right) dz, \ k \geq 1.$$

(□) (□) (□) (□) (□) (□)

Pgf of the current number of mutants

With
$$F(\zeta) := F(1, \alpha; 1 + \alpha; \zeta) = 1 + \alpha \sum_{k \ge 1} \frac{\zeta^k}{\alpha + k}$$
, $\zeta := (z - \rho)/(z - 1)$,

$$\Phi_{t}(z) = \exp{-\mu \sum_{k>0} \frac{\zeta^{k}}{\alpha + k} \left(e^{\lambda t} - e^{-\lambda k t/\alpha} \right)} = \exp{-\frac{\mu}{\alpha} \left(e^{\lambda t} F(\zeta) \right)} - F\left(\zeta e^{-\lambda t/\alpha} \right)$$
(10)

$$\mathbf{E}(N_t) = \frac{\mu x_t}{1 - \rho} \cdot \begin{cases} \log x_t & \text{if } \alpha = 1 \\ \frac{1}{1 - \alpha} \left(x_t^{1/\alpha - 1} - 1 \right) & \text{if } \alpha \neq 1 \end{cases} , \tag{11}$$

$$\sigma^{2}(N_{t}) = \frac{\mu x_{t}}{(1-\rho)^{2}} \cdot \begin{cases} 2(x_{t}-1) - (1+\rho) \log x_{t} & \text{if } \alpha = 1\\ (1+\rho)(x_{t}^{-1/2} - 1) + \log x_{t} & \text{if } \alpha = 2\\ \frac{2}{2-\alpha} x_{t}^{2/\alpha - 1} + \frac{1+\rho}{\alpha - 1} x_{t}^{1/\alpha - 1} + \frac{\rho(2-\alpha) + \alpha}{(2-\alpha)(1-\alpha)} & \text{if } \alpha \neq \{1, 2\} \end{cases}$$
 (12)

- If α < 1, both mean and SD are $O\left(x_t^{1/\alpha}\right)$ (very large fluctuations)
- If $\alpha > 2$, both mean and variance are $O(x_t)$ (a Poissonian regime).
- In all cases $\alpha \le 2$, the variance exceeds the mean (an overdispersed situation for N_t), with special logarithmic effects when $\alpha \in \{1,2\}$. Limiting (stable) laws of properly scaled versions of N_t [4].

◆□ > ◆□ > ◆豆 > ・豆 ・ 釣 へ ○

- If
$$\alpha = \lambda/r = 1$$
 (NEUTRALITY)
$$F\left(\zeta\right) = 1 - F_s\left(\eta\right) = -\frac{1-\eta}{\eta}\log\left(1-\eta\right) \text{ , } \eta = \zeta/\left(\zeta-1\right) = \left(z-\rho\right)/\left(1-\rho\right) \text{ and }$$

$$\Phi_t\left(z\right) = \left(1-\left(1-e^{-\lambda t}\right)\left(z-\rho\right)/\left(1-\rho\right)\right)^{\mu e^{\lambda t}\frac{1-z}{z-\rho}}.$$

$$\mathbf{E}N_t \sim \frac{\mu}{1-\rho} x_t \log x_t \text{ and } \sigma^2(N_t) \sim \frac{2\mu}{(1-\rho)^2} x_t^2.$$

If in addition (pure birth): $\rho = 0$ and $\mu = \nu \alpha = \nu$: (Luria-Delbrück relations)

$$\mathbf{E}N_t \sim \nu x_t \log x_t \text{ and } \sigma^2(N_t) \sim 2\nu x_t^2.$$

$$\sigma^2(N_t)/\mathbf{E}N_t \sim 2x_t/\log x_t \gg 1 \text{ and } \sigma(N_t)/\mathbf{E}N_t \sim 1/\left(\sqrt{\nu/2}\log x_t\right)$$

contrasting with $N_t \sim bin(x_t, p)!$.

The large population, small mutation *-limit

When $t \to \infty$, $\nu \to 0$ while $\mu e^{\lambda t} \sim \mu x_t = \theta > 0$ (the *-limit),

Compound Poisson:
$$\Phi_{t}(z) \to \Phi_{\infty}(z) := \mathbf{E}(z^{N_{\infty}}) = \exp\left\{-\frac{\theta}{\alpha}F(\zeta)\right\}$$
$$= \exp\left\{-\frac{\theta}{\alpha}F(\rho)\left(1 - \left(1 - F(\zeta)/F(\rho)\right)\right)\right\},$$
(13)

$$\varphi(z) = \mathbf{E}(z^{C_{\infty}^{+}}) = 1 - F(\zeta) / F(\rho) = \frac{F_{S}(\eta) - F_{S}(\rho/(\rho - 1))}{1 - F_{S}(\rho/(\rho - 1))}.$$

CLAIM: (i) The joint prob. $P_{n,p} := \mathbf{P}(N_{\infty} = n, P = p)$ obeys the five-term recurrence:

$$\begin{cases} F(\rho) \rho(n+1) P_{n+1,p} = (p\alpha F(\rho) \overline{\rho} + n(\rho+1) F(\rho)) P_{n,p} \\ +\alpha \overline{\theta} [1 - F(\rho) \overline{\rho}] P_{n,p-1} - (n-1) F(\rho) P_{n-1,p} - \alpha \overline{\theta} P_{n-1,p-1}. \end{cases}$$

(ii) q_k obeys the three-term recurrence $(q_0 = 0)$:

$$\rho(k+1) q_{k+1} = (\alpha \overline{\rho} + k (\rho + 1)) q_k - (k-1) q_{k-1}, k \ge 1.$$

I PTM

$$\mathbf{E}(N_{\infty}) = \begin{cases} & \infty \text{ if } 0 < \alpha \le 1\\ & \frac{\theta}{(1-\rho)(\alpha-1)} \text{ if } \alpha > 1 \end{cases} \text{ and } \sigma^{2}(N_{\infty}) = \begin{cases} & \infty \text{ if } 0 < \alpha \le 2\\ & \frac{\theta}{(1-\rho)^{2}} \frac{\rho(2-\alpha)+\alpha}{(\alpha-2)(\alpha-1)} \text{ if } \alpha > 2 \end{cases}.$$
 (14)

$$-\alpha > 1, \ \sigma^2\left(N_{\infty}\right) = \mathbf{E}\left(N_{\infty}\right) \frac{\rho(2-\alpha)+\alpha}{(1-\rho)(\alpha-2)} > \mathbf{E}\left(N_{\infty}\right). \ -0 < \alpha \le 1, \ \text{both} = \infty.$$

CLAIM: N_{∞} is discrete-self-dec. (SD) and thus unimodal. With

 $\theta_{\text{max}} \coloneqq \alpha \left(1 - \rho \right) / F_{\text{S}}' \left(- \rho / \left(1 - \rho \right) \right)$, it has its mode at the origin if $\theta < \theta_{\text{max}}$ and two modes at $n = \{0, 1\}$ if $\theta = \theta_{\text{max}}$.

 $\theta \le \theta_{\text{max}} \Rightarrow \text{SD}$ and unimodal near the origin. $\theta > \theta_{\text{max}}, N_{\infty}$ still SD thus unimodal but with mode away from origin.

Inspecting (11) and (12) closer, in the \star -limit

$$\mathbf{E}\left(N_{t}\right) \underset{*}{\sim} \frac{\theta}{1-\rho} \cdot \left\{ \begin{array}{l} \frac{1}{1-\alpha} x_{t}^{1/\alpha-1} \text{ if } 0 < \alpha < 1 \\ \log x_{t} \text{ if } \alpha = 1 \\ \frac{1}{\alpha-1} \text{ if } \alpha > 1 \end{array} \right., \quad \sigma^{2}\left(N_{t}\right) \underset{*}{\sim} \frac{\theta}{\left(1-\rho\right)^{2}} \cdot \left\{ \begin{array}{l} \frac{2}{2-\alpha} x_{t}^{2/\alpha-1} \text{ if } 0 < \alpha < 2 \\ \log x_{t} \text{ if } \alpha = 2 \\ \frac{\rho(2-\alpha)+\alpha}{(2-\alpha)(1-\alpha)} \text{ if } \alpha > 2 \end{array} \right.$$

<ロ> (回) (回) (注) (注) 注 り((

Time spent in the mutant-free state: local exctinctions

 $I_t = \int_0^t \mathbf{1} \left(N_s = 0 \right) ds$ fraction of time interval [0,t] free of mutants (length of the set \mathcal{I}_t uncovered by the mutants), $I_t^c = \int_0^t \mathbf{1} \left(N_s > 0 \right) ds = t - I_t$, length of the covered set \mathcal{I}_t^c , with

$$\mathcal{I}_{t} = [0, t] \cap \mathcal{I}_{t}^{c} ; \mathcal{I}_{t}^{c} = \bigcup_{k=1}^{P(\nu \Lambda_{t})} \left[S_{t}^{(k)}, S_{t}^{(k)} + \tau_{e}^{(k)} \right] \cap [0, t],$$
 (15)

 $\tau_e^{(k)}$ are iid copies of τ_e . **E** $(I_t) = \int_0^t \Phi_s(0) ds$ and putting z = 0, $\zeta = \rho$ in (10)

$$\Phi_{t}\left(0\right) = \exp\left\{-\mu \sum_{k \geq 0} \frac{\rho^{k}}{\alpha + k} \left(e^{\lambda t} - e^{-rkt}\right)\right\} = \exp\left\{-\frac{\mu}{\alpha} \left(e^{\lambda t} F\left(\rho\right) - F\left(\rho e^{-\lambda t/\alpha}\right)\right)\right\}.$$

And,
$$\mathbf{E}(I_t) = \int_0^t \Phi_s(0) ds \to \mathbf{E}(I_\infty) < \frac{e^{\mu/\alpha F(\rho)}}{\lambda} E_1(\frac{\mu}{\alpha}) < \infty$$
.

The pure birth Yule case $(\pi_0 = 0, \rho = 0)$

$$\begin{split} \mathbf{E}\left(z^{C_t}\right) &\underset{t \to \infty}{\to} \alpha \int_0^\infty d\tau \cdot e^{-\alpha\tau} \frac{ze^{-\tau}}{1-z+ze^{-\tau}} \overset{YS}{=} \frac{\alpha z}{\alpha+1} F\left(1,1;2+\alpha;z\right), \\ \Phi_t\left(z\right) &= \exp\left\{-\frac{\mu}{\alpha} \left(e^{\lambda t} F\left(z/\left(z-1\right)\right)\right) - F\left(z/\left(z-1\right)e^{-\lambda t/\alpha}\right)\right\} \\ &= \exp\left\{-\frac{\mu}{\alpha} \left(e^{\lambda t} \left(1-F_S\left(z\right)\right) - \left(1-F_S\left(\frac{e^{-\lambda t/\alpha}z}{1-z\left(1-e^{-\lambda t/\alpha}\right)}\right)\right)\right)\right\} \\ & \text{Compound-Poisson: } \Phi_t\left(z\right) \to \Phi_\infty\left(z\right) = e^{-\frac{\theta}{\alpha}\left(1-F_S\left(z\right)\right)}, \end{split}$$

CLAIM: (i) $P(N_{\infty} = n, P = p)$ obeys the three-term recurrence:

$$\left(p + \frac{n}{\alpha}\right) \mathbf{P}\left(N_{\infty} = n, P = p\right) = \frac{\theta}{\alpha} \mathbf{P}\left(N = n - 1, P = p - 1\right) + \frac{n - 1}{\alpha} \mathbf{P}\left(N = n - 1, P = p\right)$$

(ii) $q_k = \mathbf{P}(C_{\infty}^+ = k)$ obeys 2-term recurrence: $(k + \alpha + 1) q_{k+1} = kq_k, k \ge 1$.

(iii)
$$P_n = (P \mid N_{\infty} = n) \xrightarrow{d} 1 + Poi(\overline{\theta})$$
 at rate $n^{-\alpha \wedge 1}$.

CLAIM: N_{∞} is discrete-SD and thus unimodal. It has its mode at the origin if $\theta < 1 + \alpha$ and 2 modes at n = 0, 1 if $\theta = 1 + \alpha$.

If
$$r_e = r = \lambda \Rightarrow \alpha = 1$$
, using $\frac{z}{2}F(1,1;3;z) = 1 + \frac{1-z}{z}\log(1-z)$

$$q_k = \mathbf{P}(C_{\infty}^+ = k) = 1/(k(k+1)).$$

And

$$\Phi_t(z) = \left(1 - \left(1 - e^{-\lambda t}\right)z\right)^{\mu e^{\lambda t}(1-z)/z}.$$

Compound-Poisson pgf of # mutants in *-limit:

$$\Phi_{\infty}(z) = (1-z)^{\theta(1-z)/z}.$$

And

December 5th, 2016

$$\mathbf{E}(N_t) \stackrel{*}{\sim} \theta \log x_t$$
 and $\sigma^2(N_t) \stackrel{*}{\sim} 2\theta x_t > \mathbf{E}(N_t)$ contrasting with $Poi(\overline{\theta})$.

◆ロ > ◆昼 > ◆ き > ・ き * り へ ○

The subcritical case (r < 0)

 $\mathbf{P}\left(au_e > t\right) \sim e^{-r_d t}$, exp. tails. A.s. extinction. $\kappa = -\frac{r_b}{r} > 0, \; \alpha = -\lambda/r > 0.$

CLAIM: With $B \sim Bernoulli(a_0)$ distributed with success prob.

 $a_0 = e^{-\tau}/(1 + \kappa (1 - e^{-\tau}))$, \perp of $G \sim geometric(a)$ distributed with success prob.

 $a=1/\left(1+\kappa\left(1-\mathrm{e}^{-\tau}
ight)\right)$, C_{∞} is an $\exp(\alpha)$ mixture (with respect to τ) of $C\stackrel{d}{=}G\cdot B$.

$$\xi = (z - 1) / (z - \rho) = 1/\zeta \text{ and } \Phi_t(z) = \exp\left\{-\frac{\mu}{\alpha} \left(e^{\lambda t} F(\xi)\right) - F\left(\xi e^{tr}\right)\right\}.$$

The *-limit: $\nu \to 0$ and $\mu e^{\lambda t} \sim \mu x_t = \theta$, $\rho_* = 1/\rho$, pgf of a CP rv with intensity $\overline{\theta} := \theta F(\rho_*)/\alpha$ and clone size with pgf

$$\varphi(z) = \mathbf{E}\left(z^{C_{\infty}^{+}}\right) = 1 - F(\xi)/F(\rho_{*}), \text{ with } \varphi(0) = 0.$$

 $\eta = \xi/(\xi-1) = \rho_*(z-1)/(1-\rho_*)$, $\mathbf{E}(z^{C_\infty^+})$ is pgf with all falling fact. mom. $<\infty$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 釣魚の

$$\mathbf{E}\left[\left(C_{\infty}^{+}\right)_{k}\right] = \frac{k!}{F\left(\rho_{*}\right)}\left[\left(z-1\right)^{k}\right]\frac{\alpha\eta}{\alpha+1}F\left(1,1;2+\alpha;\eta\right) = \frac{k!}{F\left(\rho_{*}\right)}\left(\frac{\rho_{*}}{1-\rho_{*}}\right)^{k}\alpha B\left(k,\alpha+1\right).$$

CLAIM: In the subcrit. regime r < 0, # of mutants in *-limit is a compound-Poisson $(\theta F(\rho_*)/\alpha)$ rv, with clone size C_{∞}^+ having all its moments.

Pure death:
$$\pi_2 = 0$$
: $\Phi_t(z) = \exp\left\{-\frac{\nu\lambda(1-z)}{\lambda + r_d}\left(e^{\lambda t} - e^{-r_d t}\right)\right\}$.

*-limit: $\nu \to 0$, $t \to \infty$ while $\nu e^{\lambda t} = \theta$

$$\Phi_{\infty}(z) = \exp\left\{-\frac{\theta\lambda(1-z)}{\lambda + r_d}\right\},\,$$

pgf of Poisson rv with intensity $\overline{\theta} \coloneqq \theta \lambda / (\lambda + r_d)$. With $\alpha = \lambda / r = \lambda / (-r_d) < 0$,

$$\mathbf{E}\left(I_{t}\right)\underset{t\to\infty}{\to}\frac{1}{\lambda}\int_{1}^{\infty}\frac{du}{u}e^{-\frac{\nu\lambda}{\lambda+r_{d}}\left(u-u^{1/\alpha}\right)}<-\frac{1}{r_{d}}e^{-\frac{\nu\lambda}{\lambda+r_{d}}}E_{1}\left(-\frac{\nu\lambda}{\lambda+r_{d}}\right)<\infty.$$

Linearly growing sensitive ($\lambda_t = \lambda$): supercritical BPI

With $\mu := \nu \lambda / r_b$, $p_t / (1 - p_t) = r_b (e^{rt} - 1) / r$, Neg. Bin.

$$\Phi_{t}\left(z\right) = \exp\left\{-\nu\lambda\left(1-z\right)\int_{0}^{t}ds \cdot \frac{e^{rs}}{1 + \frac{r_{b}}{r}\left(e^{rs} - 1\right)\left(1-z\right)}\right\} = \left(\frac{1-p_{t}}{1-p_{t}z}\right)^{\mu}$$

$$\mathbf{E}(N_t) = \mu p_t / (1 - p_t) \sim \nu \lambda e^{rt} / r, \ \sigma^2(N_t) = \mu p_t / (1 - p_t)^2 \sim \nu \lambda r_b e^{2rt} / r^2.$$

$$\mathbf{E}\left(I_{t}\right) \underset{\text{if } r_{b} \neq \nu \lambda}{\sim} \frac{1}{r} \left(\frac{r_{d}}{r}\right)^{-\mu} \frac{1}{-\mu} \left[\left(\frac{r_{b}}{r_{d}} e^{rt}\right)^{-\mu} - \left(\frac{r_{b}}{r_{d}}\right)^{-\mu} \right]$$

CLAIM: • if $r_b \neq \nu \lambda$ $(\mu \neq 1)$: $\mathbf{E}(I_t) \underset{t \to \infty}{\sim} \frac{1}{\mu r} \left(\frac{r_b}{r}\right)^{-\mu}$: a constant portion of \mathbb{R}_+ .

• if $r_b = \nu \lambda$ $(\mu = 1)$: $\mathbf{E}(I_t) = \frac{1}{r_d} \left[\log \frac{u-1}{u}\right]_{\substack{r_b \\ r_d}}^{\frac{r_b}{r_d}} \sim \frac{1}{r_d} \log \frac{r}{r_b}$: a constant portion of \mathbb{R}_+ .

The *-limit $(\nu \to 0, x_t \sim \lambda t \to \infty, \nu x_t = \theta)$. $r_b, r_d \to 0, (r \to 0^+), t \to \infty$ in such a way that $r_b t = \kappa > 0$ and $r_d t = \kappa (1 - o(1)) \to \kappa$, so that $r t \to 0$. Suppose in addition $\nu \to 0$ while $\nu/r_b = \theta/(\lambda \kappa)$. Then

$$\Phi_t(z) = \left(1 + \frac{r_b}{r} \left(e^{rt} - 1\right) (1 - z)\right)^{-\nu \lambda/r_b} \to \Phi_\infty(z) = \left(1 + \kappa (1 - z)\right)^{-\theta/\kappa},$$

neg. bin parameters κ and $\overline{\theta} \coloneqq \theta/\kappa$.

Subcritical case (r < 0)

$$\Phi_{t}(z) = \exp\left\{-\nu\lambda\left(1-z\right)\int_{0}^{t}ds \cdot \frac{e^{rs}}{1+\frac{r_{b}}{r}\left(e^{rs}-1\right)\left(1-z\right)}\right\} \underset{t\to\infty}{\longrightarrow} \left(1-\frac{r_{b}}{r}\left(1-z\right)\right)^{-\mu},$$

Neg.Bin.
$$\mathbf{E}(N_{\infty}) = \mu = -\nu \lambda/r$$
, $\sigma^2(N_{\infty}) = -\nu \lambda/r (1 - r_b/r)$.

CLAIM: N_{∞} discrete-SD, so unimodal. $(\kappa := -\frac{r_b}{r} > 0)$ mode at origin if $\mu < (1 + \kappa)/\kappa$, 2 modes at n = 0, 1 if $\mu = (1 + \kappa) / \kappa$.

CLAIM: $P(P_n = p) := P(P = p \mid N_{\infty} = n) = \frac{\mu^p |s_{n,p}|}{|\mu|}$, where $|s_{n,p}|$ are the absolute first-kind Stirling numbers.

Proba. that p species are being visited when taking an uniform n-sample from the $PD(\mu)$ partition of [0,1] representing species abundances with ∞ - many species. Matches with ESF in pop. gen. P_n is # of mutations explaining $N_{\infty} = n$.

CLAIM (ESF): (i) $P(P_{n+1} = p+1 \mid P_n = p) = \frac{\mu}{\mu+n}$ and

 $P(P_{n+1} = p \mid P_n = p) = \frac{n}{n+n}$, gives probation that a new mutation occurred (the transition $p \rightarrow p+1$) or not (the transition $p \rightarrow p$) when observing one more terminal mutant (the transition $n \to n+1$), and (ii) $\frac{P_n}{\log n} \stackrel{\text{a.s.}}{\to} \mu$.

CLAIM: If r < 0, $\mathbf{E}(I_t) = \int_0^t \Phi_s(0) ds \underset{t \to \infty}{\sim} \left(1 - \frac{r_b}{r}\right)^{-\mu} t$. Constant **fraction** of \mathbb{R}_+ .

Critical case (r = 0)

$$\Phi_{t}(z) = \exp\left\{-\nu\lambda (1-z) \int_{0}^{t} \frac{1}{1+r_{b}s(1-z)} ds\right\} = (1+r_{b}t(1-z))^{-\mu}$$

$$SD - \text{Neg. Bin.: } \mathbf{E}(N_{t}) = \nu\lambda t, \ \sigma^{2}(N_{t}) = \nu\lambda t (1+r_{b}t) \sim \nu\lambda r_{b}t^{2}.$$

$$\mathbf{E}\left(e^{-\omega N_t/(\nu \lambda t)}\right) = \left(1 + r_b t \left(1 - e^{-\omega/(\nu \lambda t)}\right)\right)^{-\mu} \mathop{\sim}_{t \to \infty} \left(1 + \omega \frac{r_b}{\nu \lambda}\right)^{-\mu}, \text{ gamma } (\mu, \mu)$$

-
$$r_b \rightarrow 0$$
, $\Phi_t(z) \rightarrow e^{-\nu \lambda t(1-z)}$, Poisson $(\nu \lambda t)$.

- *-limit:
$$r_b \to 0$$
, $x_t = \lambda t \to \infty$, $r_b t \sim r_b x_t / \lambda = \kappa > 0 \Rightarrow \Phi_t (z) \xrightarrow{\text{Neg. Bin}} (1 + \kappa (1 - z))^{-\mu}$.

Critical case (r = 0), c'tnd

$$\mathbf{E}(I_{t}) = \int_{0}^{t} \Phi_{s}(0) ds = \int_{0}^{t} (1 + r_{b}s)^{-\mu} ds$$

$$= \begin{cases} \frac{1}{r_{b}(1-\mu)} \left((1 + r_{b}t)^{1-\mu} - 1 \right) & \text{if } \mu \neq 1 \\ \frac{1}{r_{b}} \log (1 + r_{b}t) & \text{if } \mu = 1. \end{cases}$$

CLAIM: All cases: $\mathbf{E}(I_t)/t \underset{t \to \infty}{\rightarrow} 0$. Safe!

- if $r_b > \nu \lambda$ $(\mu < 1)$: $\mathbf{E}(I_t) \underset{t \to \infty}{\sim} \frac{1}{r_b^{\mu}(1-\mu)} t^{1-\mu}$: sub-linear power-law growth.
- if $r_b = \nu \lambda$ $(\mu = 1)$: $\mathbf{E}(I_t) = \frac{1}{r_b} \log (1 + r_b t) \sim \frac{1}{r_b} \log t$: logarithmic growth.
- if $r_b < \nu \lambda$ $(\mu > 1)$: $\mathbf{E}(I_t) \underset{t \to \infty}{\sim} \frac{1}{r_b(\mu 1)}$: constant portion of \mathbb{R}_+ .

Critical case (r = 0), c'tnd

Variance of I_t : $t_2 > t_1$, $\phi_{t_1,t_2}(z_1,z_2) = \mathbf{E}\left(z_1^{M_{t_1}}z_2^{M_{t_2}}\right) = \phi_{t_1}(z_1\phi_{t_2-t_1}(z_2))$ Joint pgf of (N_{t_1},N_{t_2}) is (Parzen, Theorem 5A, page 146):

$$\mathbf{E}\left(z_{1}^{N_{t_{1}}}z_{2}^{N_{t_{2}}}\right) = \exp{-\nu\lambda}\left\{\int_{0}^{t_{1}}ds\left(1 - \phi_{t_{1}-s}\left(z_{1}\phi_{t_{2}-t_{1}}\left(z_{2}\right)\right)\right) + \int_{t_{1}}^{t_{2}}ds\left(1 - \phi_{t_{2}-s}\left(z_{2}\right)\right)\right\}.$$

$$\mathbf{P}(N_{t_1}=0,N_{t_2}=0)=\Phi_{t_1,t_2}(0,0)=(1+r_bt_1)^{-\mu}(1+r_b(t_2-t_1))^{-\mu}.$$

CLAIM: $B := \frac{\Gamma(1-\mu)\Gamma(2-\mu)}{\Gamma(3-2\mu)} = B(1-\mu, 2-\mu)$:

• if $r_b > \nu \lambda \ (\mu < 1)$: $\sigma^2(I_t) = \mathbf{E}(I_t^2) - \mathbf{E}(I_t)^2 \sim_{t \to \infty} \frac{1}{r_b^{2\mu}(1-\mu)^2} (2(1-\mu)B-1)t^{2(1-\mu)}$.

Standard deviation same order as $\mathbf{E}(I_t) \sim \frac{1}{r_{\mu}^{\mu}(1-\mu)}t^{1-\mu}$.

• if $r_b < \nu \lambda$ ($\mu > 1$, non-int.): $\sigma^2(I_t) \underset{t \to \infty}{\sim} \frac{1}{r_b^2(\mu - 1)^2}$: here, $I_t \overset{d}{\underset{t \to \infty}{\rightarrow}}$ finite non-degen. rv.

CLAIM: *If* μ = 1,

$$\sigma^2(I_t) \underset{t\to\infty}{\sim} \left(\frac{\log t}{r_h}\right)^2 \underset{t\to\infty}{\sim} \mathbf{E}(I_t)^2.$$

critical, c'tnd

Covariances of the vacancy process $\{B_t\} = \{\mathbf{1}(N_t = 0)\}$: With $B_{t_1} := \mathbf{1}(N_{t_1} = 0)$ and $B_{t_2} := \mathbf{1}(N_{t_2} = 0)$, $t_2 > t_1 > 0$. With $\tau = t_2 - t_1 > 0$, for each fixed t_1 , we have (long-range power-law covariances)

CLAIM:

Variations on the Luria-Delbrück model

$$0 < \mathsf{Cov}\left(B_{t_1}, B_{t_1 + \tau}\right) \underset{\mathsf{large}\ \tau}{\sim} C\left(t_1\right) \tau^{-\left(1 + \mu\right)}.$$

THANK YOU