EXERCISES: CHILE LECTURES

1) Prove that for each dimension, d, there is a constant C_d such that for each $A \in M_{d \times d}(\mathbb{R})$,

$$(1/C_d) \max_{i,j} |A_{ij}| \le s_1(A) \le C_d \max_{i,j} |A_{ij}|.$$

2) Prove that for each dimension, d, there is a constant C_d such that for each $A \in M_{d \times d}(\mathbb{R})$,

$$(1/C_d) \max_{i,j,k,l} |A_{ij}A_{kl} - A_{ik}A_{jl}| \le s_2(A) \le C_d \max_{i,j,k,l} |A_{ij}A_{kl} - A_{ik}A_{jl}|.$$

- **3)** Prove that for each dimension, d, there is a constant C_d such that for each $A \in M_{d \times d}(\mathbb{R})$, $\alpha(A)/C_d \leq s_d(A) \leq \alpha(A)$, where $\alpha(A) = \min_i d(A_i, \lim\{A_i : j \neq i\})$ and A_i denotes the ith row of A.
- 4) Let σ be a measure-preserving transformation and let $f \in L^1(\Omega, \mathbb{P})$. Prove that for \mathbb{P} -a.e. ω , $f(\sigma^n \omega)/n \to 0$. (Hints: the easiest proof that I know goes via the Birkhoff ergodic theorem; for a more elementary proof, try a proof based on Borel–Cantelli)
- 5) Let σ be an invertible ergodic measure-preserving transformation and let (f_n) be a sub-additive sequence of functions.

Prove that for \mathbb{P} -a.e. ω , $(1/n)f_n(\sigma^{-n}\omega)$ is a convergent sequence, and that the limit is $\lim_n (1/n) \int f_n d\mathbb{P}$.

Deduce that the dual cocycle has the same exponents as the primal cocycle.

6) Consider the three matrices $H = \begin{pmatrix} 4 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$ and $R_{\pm} = \mathsf{Rot}_{\pm\pi/3}$. Let μ be any ergodic invariant measure on the symbols $\{H, R_{\pm}\}$ with $\mu([H]) > 0$. Prove that the Lyapunov exponents of the cocycles are non-zero.

[Hint: consider splitting the directions (= the Grassmannian) into suitable cones.]