Competition and Coalition for Smart Energy Supply

Tito Homem-de-Mello

School of Business Universidad Adolfo Ibañez

(With Hélène Le Cadre, Bernardo Pagnoncelli and Nicolas Bourdin)

Workshop on Variational and Stochastic Analysis March 15, 2017

Context

Goals

A Stackelberg game

Consumer model
Load scheduling
Instances

A two-tier market

Stability and fairness: sharing the pie?

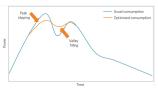
Pricing

A bilevel program
Solving the bilevel program

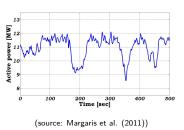
A case study

Context: flexibility integration

► Flexibility = Deferrable/alternative loads.



Need for flexibility: high penetration of renewables (unpredictable energy sources such as wind, solar, etc.).



Implementing flexibility

How to implement flexibility?

- ▶ Price-based demand response (real-time pricing, critical-peak pricing, time-of-use, etc.) [Li et al. water filling algorithm, Vasirani et al.].
- Incentive-based demand response refunds [Chao et al. menu based load increment differentiation].
- ► Storage

Context: aggregators entering the electricity market

Aggregators (Flexibility Service Provider FSP)

- New entrants on the electricity market
- Can group and manage flexibility of clusters of flexible consumers
- Offer demand response services to different power system participants.

Potential advantages from the consumers' perspective:

- ▶ Benefits of demand response mechanism (e.g., better service)
- A lower bill at the end of the month.

Questions

- How should an aggregator price his services so as to reach a targeted profit?
- ► How should this targeted profit be defined so as to guarantee that none of his clients switches to the conventional retailer?

A Stackelberg game to model consumers (followers)-FSP (leader) interactions [Zugno et al.]

- ▶ Horizon T > 0 days,
- ▶ Discretization $n \in \mathbb{N}^*$ time periods per day.

Setting the Stackelberg game

Agents

- two suppliers in competition: aggregator vs conventional retailer,
- consumers captive over nT time periods.

Input

- coalition \(\mathcal{G} \) fixed,
- ▶ aggregator's targeted profit $\Pi_{agg} \ge 0$,
- cost sharing mechanism chosen by the aggregator.

Each consumer i has

- \triangleright a set of shiftable loads \mathcal{L}_i ,
- ▶ a (stochastic) base load profile $d_i = \left(d_i(t)\right)_{t=0}^{nT-1}$.

Shiftable loads are scheduled automatically thanks to an intelligent device.

Consumer model

For each load $l \in \mathcal{L}_i$ consumer i gives:

- intrinsic characteristics,
- ▶ priority level $k_{i,l} \in [1; K]$.

Reservation prices (private information)

- Maximum price the consumer is willing to pay per unit of load for each priority level.
- Priority rule:

$$k_{i,l} \prec k_{i,l'} \Rightarrow p_{\mathsf{max},i}(k_{i,l}) > p_{\mathsf{max},i}(k_{i,l'}), \forall l, l' \in \mathcal{L}_i, l \neq l'.$$

Timing of the game - Horizon nT

- 1. **Pricing:** the aggregator determines his price profile $p^* = \left(p^*(t)\right)_{t=0}^{nT-1}$ so as to reach Π_{agg} .
- 2. **Load scheduling:** observing p^* , each consumer $i \in \mathcal{G}$ (intelligent device) chooses the load profile $\mathbf{x_{i,l}} = \left(x_{i,l}(t)\right)_{t=0}^{nT-1}, \forall l \in \mathcal{L}_i$ that minimizes their bill while taking into account constraints imposed by:
 - ▶ the intrinsic characteristics of his loads.
 - ▶ (private) reservation prices.

Scheduling the shiftable loads (\mathcal{L}_i)

 $\mathcal{L}_i = \mathcal{B}_i \cup \mathcal{I}_i$ where \mathcal{B}_i block load set and \mathcal{I}_i interruptible load set.

Load intrinsic characteristics

- ► Earliest start time period: $t_{i,l} \in [0; nT 1]$,
- ▶ Latest finish time period: $\overline{t_{i,l}} \in \llbracket 0; nT 1 \rrbracket$ with $t_{i,l} \leq \overline{t_{i,l}}$,
- ▶ Duration of the load: $\mu_{i,l} \in \llbracket 0; nT \rrbracket$, with $0 \le \mu_{i,l} \le \overline{t_{i,l}} \underline{t_{i,l}}$,
- ▶ Power rate (kW): $w_{i,l} \in \mathbb{R}_*^+$,
- ▶ Priority level: $k_{i,l} \in [1; K]$.

Reservation price mechanism

Each load $I \in \mathcal{L}_i$ is scheduled only if

$$\boldsymbol{p}^{\star T} \boldsymbol{x_{i,l}} \leq p_{\max,i}(k_{i,l}) \mu_{i,l} w_{i,l}. \tag{1}$$

Example: daily load scheduling

Two instances with T = 1, n = 144, K = 3 priority levels

► Block loads

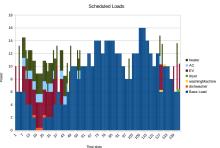
Device	Priority	Duration	Earliest	Latest	Power
Dishwasher	1	12	36	126	0.35
Washing machine	2	6	108	132	0.26
Dryer	3	3	132	144	0.4

Interruptible loads

Device	Priority	Duration	Earliest	Latest	Power
Electric Vehicle	1	42	0	144	4.0
Heater	2	48	0	144	3.2
A/C	3	36	0	144	1.3

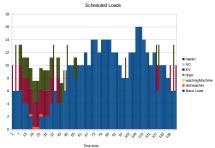
First instance: high reservation prices

For the 3 priority levels: $p_{\max,i}(1) = 1000$, $p_{\max,i}(2) = 20$, $p_{\max,i}(3) = 15$.



Second instance: low reservation prices

For the 3 priority levels: $p_{\max,i}(1) = 1000$, $p_{\max,i}(2) = 10$, $p_{\max,i}(3) = 5$.



Taking forward positions in the day-ahead market

Stochastic base load

- $d_i(t) = \hat{d}_i(t) \epsilon_i(t), \forall i \in \mathscr{G}, \forall t \in [0; nT 1]$
- $\hat{d}_i(t)$ is the forecasted load.

Price-taker utilities

- $\triangleright p^f(t)$ day-ahead market price,
- $ightharpoonup p^+(t)$ balancing market price in case of excess power
- $ightharpoonup p^-(t)$ in case of lack of power
- ▶ $p^+(t) < p^f(t) < p^-(t)$.

Possible price surcharge $p^f(t) \leq p^*(t)$

- Suppliers must purchase energy in advance on the wholesale day-ahead market.
- ▶ Price surcharge justified by the risk that suppliers take.

Gambling on the balancing

Consumer imbalance penalty

$$\begin{array}{lcl} \textit{IB}_{\textit{i}}(t) & = & p^{-}(t) \underbrace{\left(\hat{d}_{\textit{i}}(t) - d_{\textit{i}}(t)\right)_{-}}_{\textit{under-estimation}} + \left(p^{f}(t) - p^{+}(t)\right) \underbrace{\left(\hat{d}_{\textit{i}}(t) - d_{\textit{i}}(t)\right)_{+}}_{\textit{over-estimation}}, \\ & = & p^{-}(t) \big(\epsilon_{\textit{i}}(t)\big)_{-} + \Big(p^{f}(t) - p^{+}(t)\Big) \big(\epsilon_{\textit{i}}(t)\big)_{+}. \end{array}$$

Gambling on the balancing

- ► Each consumer pays the aggregator for his short/long position estimated in day-ahead.
- Aggregator may not need to cover all the positions (short positions cancelled out by long positions) although all the consumers pay their mismatches.

Aggregator's utility function

Coalition cost:

$$egin{split} c(\mathscr{G},t) &= p^f(t) \sum_{i \in \mathscr{G}} \Big(\sum_{l \in \mathcal{L}_i} x_{i,l}(t) + \hat{d}_i(t) \Big) \ &+ p^-(t) \Big(\sum_{i \in \mathscr{G}} (\hat{d}_i(t) - d_i(t)) \Big)_- - p^+(t) \Big(\sum_{i \in \mathscr{G}} (\hat{d}_i(t) - d_i(t)) \Big)_+ \end{split}$$

Aggregator's expected profit:

$$\Pi_{\mathsf{agg}} = \sum_{t=0}^{nT-1} \Big\{ \underbrace{p^{\star}(t) \sum_{i \in \mathscr{G}} \big(\sum_{l \in \mathcal{L}_i} x_{i,l}(t) + \hat{d}_i(t) \big) + \sum_{i \in \mathscr{G}} \mathbb{E}[IB_i(t)] - \mathbb{E}[c(\mathscr{G}, t)] \Big\}}_{\text{total bill paid by coalition } \mathscr{G}}.$$

Stability and fairness: sharing the pie?

The aggregator shares his cost $\Pi_{agg} + \sum_t \mathbb{E}[c(\mathscr{G},t)]$ to guarantee:

- ▶ the stability of his coalition 𝒞,
- (a certain idea of) fairness.

How do we fairly share the cake?

Conventional retailer cost

 $c_{retailer}(i,t) = p_{retailer}(t) \Big(d_i(t) + \sum_{l \in \mathcal{L}_i} x_{i,l}(t) \Big)$ with $p_{retailer}(t)$ the conventional retailer's price at time period t.

Cost-sharing mechanisms

We consider several cost-sharing mechanisms:

Stand-alone cost:

$$y_i := \kappa_i \Big\{ \Pi_{agg} + \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathcal{G}, t)] \Big\}$$

where
$$\kappa_i = \frac{\sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(i,t)]}{\sum_{j \in \mathscr{G}} \sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(j,t)]}$$
.

► Shapley value: computed under the assumption that the coalition is formed by entering the participants one at a time. It can be shown that

$$y_i = \frac{\prod_{agg} + \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathscr{G}, t)]}{card(\mathscr{G})}, \forall i \in \mathscr{G}.$$

Cost-sharing mechanisms (cont.)

Separable and non-separable costs:

$$y_i = m_i + \frac{\kappa_i}{\sum_{j \in \mathscr{G}} \kappa_j} \xi(\mathscr{G}), \forall i \in \mathscr{G},$$
 (2)

where $m_i = \sum_{t=0}^{nT-1} \left\{ \mathbb{E}[c(\mathcal{G},t)] - \mathbb{E}[c(\mathcal{G}-\{i\},t)] \right\}$ is the marginal cost of participant i with respect to the coalition \mathcal{G} , and

$$\xi(\mathscr{G}) = \left(\Pi_{agg} + \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathscr{G}, t)]\right) - \sum_{j \in \mathscr{G}} m_j, \quad (3)$$

with
$$\kappa_i = \frac{1}{\operatorname{card}(\mathscr{G})} \quad \forall i \in \mathscr{G}$$
, or $\kappa_i = \sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(i,t)] - m_i \quad \forall i \in \mathscr{G}$.

Greediness has its limit

Aggregator's profit maximization

$$(\begin{tabular}{ll} \textit{UU} \end{tabular}) \begin{tabular}{ll} \textit{max} & \Pi_{agg}, \\ s.t. & \textit{y}_i = \psi_i \Big(\Pi_{agg}, \sum_{j \in \mathscr{G}} \sum_{t=0}^{nT-1} \big(x_j(t) + \hat{d}_j(t) \big) \Big), \forall i \in \mathscr{G}, \begin{tabular}{ll} \textbf{Fairness} \\ & \sum_{i \in \mathscr{G}} y_i = \Pi_{agg} + \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathscr{G},t)], \begin{tabular}{ll} \textbf{Group Rationality} \\ & y_i \leq \sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(i,t)], \forall i \in \mathscr{G}. \begin{tabular}{ll} \textbf{Individual Rationality} \\ \end{tabular}$$

Solving (UU)

Let Π_{agg}^* be a solution of (UU). $\psi_i(.)$, cost sharing mechanism (stand-alone, Shapley, separable and non-separable costs).

Solutions	Π^*_{agg}		
Stand-alone	$\sum_{j \in \mathcal{G}} \sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(j,t)] - \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathcal{G},t)]$		
Shapley			
Separable and	$\min_{i \in \mathcal{G}} \left\{ \frac{\sum_{j \in \mathcal{G}} \kappa_j}{\kappa_i} \left(\sum_{t=0}^{nT-1} \mathbb{E}[c_{retailer}(i,t)] \right) \right\}$		
non-separable costs	$-\sum_{j\in\mathfrak{G}\backslash\{i\}}\sum_{t=0}^{nT-1}\mathbb{E}[c(\mathfrak{G}\backslash\{j\},t)]\Big)$		
	$-\left(1 - card(\mathfrak{G}) + \frac{\sum_{j \in \mathfrak{G}} \kappa_j}{\kappa_i}\right) \sum_{t=0}^{nT-1} \mathbb{E}[c(\mathfrak{G}, t)]\right\}$		

Remark

 Π_{agg}^* depends on coalition $\mathscr G$ size and content.

Computing the prices

Let y_i be the bill paid by consumer i over the nT time period.

Aggregator price profile p^* is solution of the system:

$$\underline{y_i} - \sum_{t=0}^{nT-1} \mathbb{E}[IB_i(t)] = \sum_{t=0}^{nT-1} p^*(t) \Big(\sum_{I \in \mathcal{L}_i} x_{i,I}(t) + \hat{d}_i(t) \Big), \forall i \in \mathcal{G}.$$

We can rewrite the system as:

$$\boldsymbol{A}\boldsymbol{\rho}^{\star}=\boldsymbol{b},\tag{4}$$

where

$$b_i = \mathbf{y}_i - \sum_{t=0}^{nT-1} \mathbb{E}[IB_i(t)], \forall i \in \mathscr{G},$$

$$A_{i,t} = \sum_{l \in \mathcal{L}_i} x_{i,l}(t) + \hat{d}_i(t), \forall i \in \mathcal{G}, \forall t \in [0; nT - 1].$$

BUT: Note that both **b** and **A** depend on $p^*!$ (through **x** and **y**)

A bilevel mathematical program

Upper-level: the aggregator solves

$$\begin{aligned} & \text{(U)} & \min_{\boldsymbol{p}^{\star}} & & \|\boldsymbol{A}\boldsymbol{p}^{\star} - \boldsymbol{b}\|, \\ & s.t. & & \rho^{\star}(t) \geq 0, \forall t \in [0; nT - 1], \end{aligned}$$

▶ Lower-level: each consumer $i \in \mathcal{G}$ solves

$$\begin{aligned} (\mathbf{L}_{i}) & \min_{\left(\boldsymbol{x}_{i,l}\right)_{l \in \mathcal{L}_{i}} \in \mathcal{X}_{i,l}} & \sum_{l \in \mathcal{L}_{i}} \boldsymbol{p^{\star}}^{T} \boldsymbol{x}_{i,l}, \\ s.t. & \mathscr{C}_{i} \left(\left(\boldsymbol{x}_{i,l}\right)_{l \in \mathcal{L}_{i}}, \boldsymbol{p^{\star}}\right) \leq 0. \end{aligned}$$

with $\mathcal{X}_{i,l}$ a discrete decision space and $\mathscr{C}_i(.)$ a set of constraints on the shiftable loads of consumer i, $(\mathbf{x}_{i,l})_{l \in \mathcal{L}_i}$.

 \rightarrow A non-convex mixed-integer program with discrete decision variables in (L_i).

Solving the bilevel program

Problem: No closed-form expression for the response function connecting (L_i) with (U).

Some ideas:

- ▶ Use a derivative-free global optimization method to solve (U) with $b = b(p^*)$ and $A = A(p^*)$
- Find the best p* from among a not very large number of fixed price profiles.
- Note that we need to deal with the issue of private information [similar in Ruiz & Conejo,Gonzalez & Andersson for MPECs]; so, the aggregator needs to estimate p̂_{max,i}(k_{i,l}).

A case study

We tested our model on a database containing the power consumption of French residential consumers (RTE).

- ► The aggregated power consumption for France is monitored every hour on a 4 year basis.
- ► The market price profile in day ahead and on the balancing are simulated based on RTE data market.

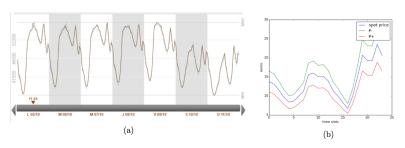
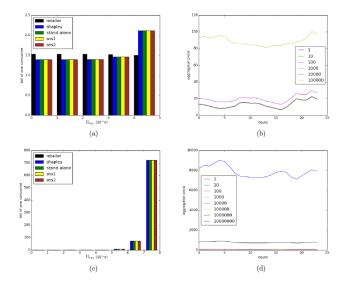


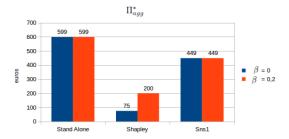
Figure 2: Aggregated weekly power consumption profile (kW) for French residential consumers in (a), between October 5-th and October 11-th. Daily market price profiles on the balancing and day-ahead markets in (b).

Consumer's bill and aggregator's daily price profile

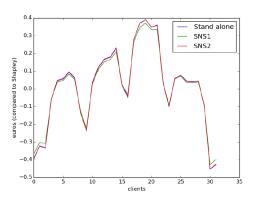


Comparing Π_{agg}^* for various cost sharing mechanisms

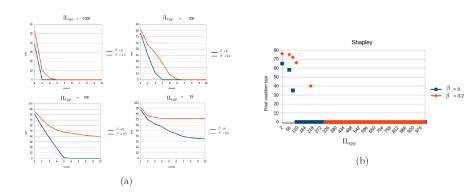
Let $\beta \in [0; 1]$ be the probability of inertia.



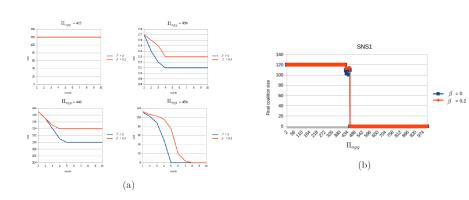
Shapley vs stand-alone and separable and non-separable costs



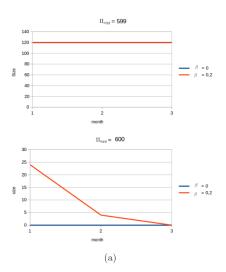
Coalition dynamics under Shapley

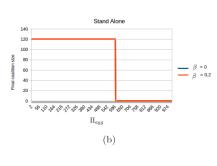


Coalition dynamics under separable and non-separable costs



Coalition dynamics under stand-alone cost





Conclusions

- Coalition schemes can be useful and beneficial to consumers, provided that the aggregator limits its profits to keep the consumers in the coalition.
- ► The general case, where flexible loads are scheduled depending on the price, is very challenging from an algorithmic perspective, as it requires solving a bilevel model with integer variables.
- ► The choice of cost-sharing mechanism matters, both for the consumers as well as for the aggregator.