Regular processes and duality

Teemu Pennanen Ari-Pekka Perkkiö King's College London LMU Munich

Introduction

Raw cadlag processes Adapted processes Regular processes Applications

- We give a functional analytic proof of the main theorem of [Bismut, 1978], which identifies regular process as the optional projections of continuous processes.
- Besides being simpler, our proof
 - identifies the Banach dual of regular processes with the space of optional random measures of bounded variation
 - generalizes to situations the total variation needs not be essentially bounded.
- The above provides the basis for duality theory of singular stochastic control developed in a follow-up paper.
- The functional analytic setup brings many problems in stochastic analysis within the reach of variational analysis.

Introduction

Raw cadlag processes Adapted processes Regular processes Applications

- Rockafellar, Conjugate duality and optimization, SIAM, 1974.
- Rockafellar, Conjugate convex functions in optimal control and the calculus of variations, JMAA, 1970.
- Bismut, Conjugate convex functions in optimal stochastic control, JMAA, 1973.
- Rockafellar, *Dual problems of Lagrange for arcs of bounded variation*, in Calculus of variations and control theory, 1975
- Bismut, *Régularité et continuité des processus*, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Probability theory and related fields), 1978.
- Pennanen and Perkkiö, Convex integral functionals of regular processes, submitted.

Raw cadlag processes

Adapted processes Regular processes Applications

- Equipped with the supremum norm, the space of cadlag functions D on [0,T] is a Banach space.
- The dual of D can be identified with $M \times M$, where M is the space of Radon measures on [0,T] and $\tilde{M} \subset M$ is the space of purely atomic measures.
- The dual norm is $||u||_{TV} + ||\tilde{u}||_{TV}$.
- Indeed, for every continuous linear functional on D there is a unique $(u,\tilde{u})\in M\times \tilde{M}$ with

$$\langle y, (u, \tilde{u}) \rangle := \int y du + \int y_{-}d\tilde{u}.$$

• The space C of continuous functions on [0,T] is paired similarly with M (Riesz representation theorem).

Raw cadlag processes

Adapted processes Regular processes Applications

- Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{Y} be a Banach space of random variables.
- ullet We assume that the dual of ${\mathcal Y}$ can be identified with another space ${\mathcal U}$ of random variables under the pairing

$$\langle y, u \rangle := E(y \cdot u).$$

- Examples include $\mathcal{Y}=L^p$ with $p<\infty$ or $\mathcal{Y}=$ an Orlicz space with a Young whose conjugate satisfies the Δ_2 -condition.
- More generally, one can allow for Fréchet spaces of random variables but, for simplicity, we won't consider that here.

Raw cadlag processes

Adapted processes Regular processes Applications • Let $\mathcal{Y}(D):=\{y\in L^0(D)\mid \|y\|_D\in\mathcal{Y}\}$ and

$$\mathcal{U}(M \times \tilde{M}) := \{ (u, \tilde{u}) \in L^0(M \times \tilde{M}) \mid ||u||_{TV} + ||\tilde{u}||_{TV} \in \mathcal{U} \}.$$

where $L^0(D)$ and $L^0(M \times \tilde{M})$ are the spaces of weakly measurable random variables with values in D and $M \times \tilde{M}$.

Theorem 1 $\mathcal{Y}(D)$ with $\|y\|_{\mathcal{Y}(D)}:=\|\|y\|_D\|_{\mathcal{Y}}$ is a Banach space and its dual can be identified with $\mathcal{U}(M\times \tilde{M})$ through the bilinear form

$$\langle y, (u, \tilde{u}) \rangle := E \left[\int y du + \int y_{-} d\tilde{u} \right].$$

The dual norm is $\|(u, \tilde{u})\|_{\mathcal{U}(M \times \tilde{M})} = \|\|u\|_{TV} + \|\tilde{u}\|_{TV}\|_{\mathcal{U}}$.

Raw cadlag processes

Adapted processes Regular processes Applications Let

$$\mathcal{Y}(C) := \{ y \in L^0(C) \mid ||y||_C \in \mathcal{Y} \},$$

$$\mathcal{U}(M) := \{ u \in L^0(M) \mid ||u||_{TV} \in \mathcal{U} \}.$$

Corollary 2 $\mathcal{Y}(C)$ is a Banach space and its dual can be identified with $\mathcal{U}(M)$ through the bilinear form

$$\langle y, u \rangle := E \int y du.$$

The dual norm is

$$||u||_{\mathcal{U}(M)} = |||u||_{TV}||_{\mathcal{U}}.$$

Raw cadlag processes

Adapted processes

Regular processes
Applications

- Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration with \mathcal{F}_0 complete and $\mathcal{F}_t = \cap_{s>t} \mathcal{F}_s$.
- ullet The optional [predictable] sigma-algebra on $\Omega imes [0,T]$ is that generated by adapted right-[left]-continuous processes.
- Given $y \in \mathcal{Y}(D)$, there exist an optional process ^{o}y with

$${}^{o}y_{\tau}\mathbb{1}_{\{\tau<\infty\}}=E[y_{\tau}\mathbb{1}_{\{\tau<\infty\}}\mid\mathcal{F}_{\tau}]$$
 P -a.s.

for every stopping time τ and a predictable process py with

$$p_{y_{\tau}} \mathbb{1}_{\{\tau < \infty\}} = E\left[y_{\tau} \mathbb{1}_{\{\tau < \infty\}} \mid \mathcal{F}_{\tau-}\right] \quad P$$
-a.s.

for every predictable time τ .

• The processes ${}^{o}y$ and ${}^{p}y$ are called the optional and predictable projections, respectively, of y.

Lemma 3 For any $y \in \mathcal{Y}(D)$, we have $({}^{o}y)_{-} = {}^{p}(y_{-})$.

Raw cadlag processes

Adapted processes

Regular processes
Applications

- \bullet The optional projection is a linear mapping from $\mathcal{Y}(D)$ to the space of adapted cadlag processes.
- $y \in \mathcal{Y}(D)$ does not imply ${}^o y \in \mathcal{Y}(D)$, in general, but the Jensen's inequality $|{}^o y_{\tau}| \leq E[\|y\|_D |\mathcal{F}_{\tau}]$ gives

$$\sup_{\tau \in \mathcal{T}} \| {}^{o}y_{\tau} \|_{\mathcal{Y}} \le \| y \|_{\mathcal{Y}(D)} \quad \forall y \in \mathcal{Y}(D),$$

where \mathcal{T} is the set of all stopping times.

• We will denote by $\tilde{\mathcal{D}}^{\mathcal{Y}}$ the (Banach) space of optional cadlag processes such that $\{y_{\tau} \mid \tau \in \mathcal{T}\}$ is bounded in \mathcal{Y} :

$$\sup_{\tau \in \mathcal{T}} \|y_{\tau}\|_{\mathcal{Y}} < \infty.$$

Raw cadlag processes

Adapted processes

Regular processes
Applications

A random measure u is optional or predictable, respectively, if, for all bounded measurable processes y,

$$E \int^{o} y du = E \int y du,$$
$$E \int^{p} y du = E \int y du.$$

Let

$$\hat{\mathcal{M}}^{\mathcal{U}} := \{(u, \tilde{u}) \in \mathcal{U}(M \times \tilde{M}) \mid u \text{ optional, } \tilde{u} \text{ predictable}\}.$$

Raw cadlag processes

Adapted processes

Regular processes Applications **Assumption 1** The optional projection is a continuous mapping from $\mathcal{Y}(D)$ to a Banach space $\mathcal{D}^{\mathcal{Y}} \subseteq \tilde{\mathcal{D}}^{\mathcal{Y}}$ whose dual can be identified with $\hat{\mathcal{M}}^{\mathcal{U}}$ under the bilinear form

$$\langle y, (u, \tilde{u}) \rangle := E \left[\int y du + \int y_{-} d\tilde{u} \right].$$

Theorem 4 Under Assumption 1, the optional projection is a surjection from $\mathcal{Y}(D)$ to $\mathcal{D}^{\mathcal{Y}}$, its adjoint is the embedding of $\hat{\mathcal{M}}^{\mathcal{U}}$ to $\mathcal{U}(M\times \tilde{M})$ and the norm of $\mathcal{D}^{\mathcal{Y}}$ is equivalent to

$$||y||_{\mathcal{D}^{\mathcal{Y}}} := \inf_{z \in \mathcal{Y}(D)} \{ ||z||_{\mathcal{Y}(D)} | {}^{o}z = y \}$$

the polar of which is

$$\|(u, \tilde{u})\|_{\hat{\mathcal{M}}^{\mathcal{U}}} = \|(u, \tilde{u})\|_{\mathcal{U}(M \times \tilde{M})} := \|\|u\|_{TV} + \|\tilde{u}\|_{TV}\|_{\mathcal{U}}.$$

Raw cadlag processes

Adapted processes

Regular processes
Applications

Example 5 Let $\mathcal{Y}=L^1$. Then the closure $\mathcal{D}^{\mathcal{Y}}$ of $L^{\infty}(D)$ in $\tilde{\mathcal{D}}^{\mathcal{Y}}$ with respect to the norm

$$||y||_{\tilde{\mathcal{D}}^{\mathcal{Y}}} := \sup_{\tau \in \mathcal{T}} ||y_{\tau}||_{\mathcal{Y}}$$

satisfies Assumption 1. Moreover, $\mathcal{D}^{\mathcal{Y}}$ contains optional cadlag processes with $\{y_{\tau} \mid \tau \in \mathcal{T}\}$ uniformly integrable, and the optional projection from $\mathcal{Y}(D)$ to $\mathcal{D}^{\mathcal{Y}}$ has norm one.

Example 6 If $\mathcal{Y} = L^p$ with p > 1, then the space $\mathcal{D}^{\mathcal{Y}} := \{ y \in \tilde{\mathcal{D}}^{\mathcal{Y}} \mid ||y||_D \in \mathcal{Y} \}$ endowed with the norm $|||y||_D||_{L^p}$ satisfies Assumption 1.

Regular processes

Raw cadlag processes Adapted processes

Regular processes

Applications

Let $\mathcal{R}^{\mathcal{Y}} := \{ y \in \mathcal{D}^{\mathcal{Y}} \mid {}^p y = y_- \}$. Following [Bismut, 1978] (where $\mathcal{Y} = L^1$), we call the elements of $\mathcal{R}^{\mathcal{Y}}$ regular processes.

Theorem 7 Under Assumption 1, the space $\mathcal{R}^{\mathcal{Y}}$ is Banach, its dual can be identified with $\mathcal{M}^{\mathcal{U}}$ through the bilinear form

$$\langle y, u \rangle = E \int y du,$$

the optional projection is a continuous surjection from $\mathcal{Y}(C)$ to $\mathcal{R}^{\mathcal{Y}}$, its adjoint is the embedding of $\mathcal{M}^{\mathcal{U}}$ to $\mathcal{U}(M)$ and the norm of $\mathcal{R}^{\mathcal{Y}}$ is equivalent to

$$||y||_{\mathcal{R}^{\mathcal{Y}}} := \inf_{z \in \mathcal{Y}(C)} \{||z||_D) | {}^o z = y\},$$

the polars of which are given by $||u||_{\mathcal{M}^{\mathcal{U}}} := |||u||_{TV}||_{\mathcal{U}}$.

Regular processes

Raw cadlag processes Adapted processes

Regular processes

Applications

Example 8 If $\mathcal{Y} = L^1$, the space $\mathcal{R}^{\mathcal{Y}}$ coincides with the space of cadlag processes y of class (D) with $y_- = {}^p y$ and its dual is $\mathcal{M}^{L^{\infty}}$.

Example 9 If $\mathcal{Y} = L^p$, the space $\mathcal{R}^{\mathcal{Y}}$ coincides with the space of optional cadlag processes y with $||y|| \in L^p$ and $y_- = {}^p y$ and its dual is \mathcal{M}^{L^q} .

Example 10 Let \mathcal{Y} be the Morse-heart of the Orlicz space L^{Ψ} and \mathcal{U} be the Orlicz space L^{Φ} for conjugate Young functions Ψ and Φ such that $\Psi(\alpha) > 0$ for $\alpha > 0$ and Φ is Δ_2 . Then $\mathcal{R}^{\mathcal{Y}}$ coincides with the space of optional cadlag processes y with $||y|| \in \mathcal{Y}$ and $y_- = {}^p y$ and its dual is $\mathcal{M}^{\mathcal{U}}$.

Applications: Optimal stopping

Raw cadlag processes Adapted processes Regular processes

Applications

• Let $R \in \mathcal{R}^1$ and consider the optimal stopping problem $\max ER_{\tau}$ over $\tau \in \mathcal{T}$.

• Defining $C_e := \{u \in \mathcal{M}_+^{\infty} \mid \operatorname{rge} u \in \{0,1\}\}$, we can write this as

maximize
$$\langle R, u \rangle$$
 over $u \in \mathcal{C}_e$,

• Clearly, $C_e \subset C := \{u \in \mathcal{M}_+^{\infty} \mid \operatorname{rge} u \in [0,1]\}.$

Lemma 11 The set C is convex, $\sigma(\mathcal{M}^{\infty}, \mathcal{R}^1)$ -compact and C_e is the set of its extreme points.

Applications: Optimal stopping

Raw cadlag processes Adapted processes Regular processes

Applications

• Krein–Millman and Banach–Alaoglu then give the existence of optimal stopping for any $R \in \mathcal{R}^1$.

- This extends [Bismut and Skalli, 1977] and [El Karoui, 1981] who considered bounded regular processes.
- Note that u solves the relaxed problem iff $R \in \partial \delta_{\mathcal{C}}(u)$ or equivalently $u \in \partial \sigma_{\mathcal{C}}(R)$, where

$$\sigma_{\mathcal{C}}(R) = \sup_{u \in \mathcal{C}} \langle R, u \rangle.$$

- If R is nonnegative, we have $\sigma_{\mathcal{C}}(R) = ||R||_{\mathcal{R}^1}$ (by Krein–Milman) so the optimal solutions of the relaxed problem are simply the subgradients of $||\cdot||_{\mathcal{R}^1}$ at R.
- The relaxed problem and Banach–Alaoglu extend directly to $R \in \mathcal{R}^{\mathcal{Y}}$ and $\mathcal{C} := \{u \in \mathcal{M}_{+}^{\mathcal{U}} \mid ||u||_{\mathcal{M}^{\mathcal{U}}} \leq 1\}.$

Raw cadlag processes Adapted processes Regular processes

Applications

• Under conditions given in [Rockafellar, 1971] and [Perkkiö, 2014, 2017] the conjugate of the integral functional

$$I_h(y) := \int_{[0,T]} h(y) d\mu$$

on C has representation

$$J_{h^*}(u) := \int_{[0,T]} h^*(du^a/d\mu) + \int_{[0,T]} (h^*)^{\infty} (du^s/d|u^s|) d|u^s|,$$

where u^a and u^s are the absolutely continuous and the singular part, respectively, of u with respect to μ .

• We extend this to integral functionals on $\mathcal{R}^{\mathcal{Y}}$.

Raw cadlag processes Adapted processes Regular processes

Applications

• Given a convex normal integrand h on $(\Omega \times [0,T]) \times \mathbb{R}^d$, and consider the integral functional $EI_h : \mathcal{R}^{\mathcal{Y}} \to \overline{\mathbb{R}}$,

$$EI_h(y) := E \int_{[0,T]} h(v) d\mu.$$

- The space $\mathcal{R}^{\mathcal{Y}}$ is not decomposable nor are the paths of $y \in \mathcal{R}^{\mathcal{Y}}$ continuous, in general.
- We will assume that μ is optional and that h is "regular" in the sense that its conjugate is the "optional projection" of a normal integrand that satisfies pathwise the conditions of [Rockafellar, 1971] or [Perkkiö, 2014, 2017].

Raw cadlag processes Adapted processes Regular processes

Applications

- A normal integrand g on $\mathbb{R}^d \times \Omega \times [0,T]$ is said to be optional if its epigraph is measurable with respect to the optional sigma algebra on $\Omega \times [0,T]$.
- A stochastic process v is \mathcal{T} -integrable if v_{τ} is integrable for every $\tau \in \mathcal{T}$.
- If g is a convex normal integrand such that $g^*(v)^+$ is \mathcal{T} -integrable for some \mathcal{T} -integrable v then, by [Kiiski and Perkkiö, 2016], there exists a unique optional convex normal integrand g such that for every bounded optional x.

$$^{o}g(x) = ^{o}[g(x)]$$

 \bullet ${}^{o}g$ is called the optional projection of g.

Raw cadlag processes Adapted processes Regular processes

Applications

Definition 12 An optional convex normal integrand h on \mathbb{R}^d is regular if $h^* = \tilde{h}^*$ for a convex normal integrand \tilde{h} such that $\tilde{h}(\omega)$ satisfies, for P-almost every ω , the conditions of [Rockafellar, 1971] or [Perkkiö, 2014, 2017] and

$$\tilde{h}(v) \geq v \cdot \bar{x} - \alpha$$
 a.s.e.

$$\tilde{h}^*(x) \geq \bar{v} \cdot x - \alpha$$
 a.s.e.

for some $\bar{v} \in \mathcal{Y}(C)$ with $\bar{v} \in C(D)$ almost surely, optional \bar{x} with $\int |\bar{x}| d\mu \in \mathcal{U}$ and some \mathcal{T} -integrable α with $\int |\alpha| d\mu \in L^1$.

Raw cadlag processes Adapted processes Regular processes

Applications

Theorem 13 If h is a regular convex normal integrand, then $EI_h : \mathcal{R}^{\mathcal{Y}} \to \overline{\mathbb{R}}$ and $EJ_{h^*} : \mathcal{M}^{\mathcal{U}} \to \overline{\mathbb{R}}$ are proper and conjugate to each other and, moreover, $\theta \in \partial EI_h(v)$ iff

$$d\theta^a/d\mu \in \partial h(v)$$
 μ -a.e., $d\theta^s/d|\theta^s| \in \partial^s h(v)$ $|\theta^s|$ -a.e.

almost surely.

Here $\partial^s h := \partial \delta_{\operatorname{cl} \operatorname{dom} h}$

Applications: Singular stochastic control

Raw cadlag processes Adapted processes Regular processes

Applications

- In the general formulation of (deterministic) singular control, one minimizes functionals of the form J_h over Radon measures or, equivalently, functions of bounded variation; see [Rockafellar, 1978].
- In the general formulation of stochastic control, one minimizes functionals of the form EI_h over semimartingales whose BV part if absolutely continuous; see [Bismut, 1973]
- In a general formulation of singular stochastic control, one minimizes functionals of the form EJ_h over general semimartingales; see [Pennanen and Perkkiö, manuscript].