Lecture notes on percolation and long-range percolation Author: Dieter Mitsche, Scribe: Louis Hauseux

January 12, 2024

Lecture 1

Percolation

Simplest model: Bond-Percolation on \mathbb{Z}^2 , *i.e.* the set of vertices $V = \mathbb{Z}^2$.

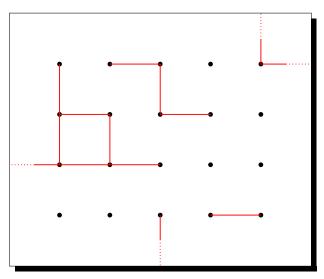


Figure 1.1: Example of Bond-Percolation on the grid \mathbb{Z}^2 . Edges are drawn in red.

For all $v, v' \in V$ that differ in exactly one coordinate $(|v - v'|_1 = 1)$, put the edge $e = \{v, v'\}$ with probability p, independently of all other edges. (See an example on Figure ??.)

Question: Does an infinite cluster (= connected component of infinite size) exist?

In this case, is the origin O = (0, 0) contained in an infinite cluster?

If 0 , <math>(0, 0) has a non-null probability $(1-p)^4$ to be an isolated vertex (and so O is not in an infinite cluster; cf. Figure ??).

Define:

- $\theta(p) := \mathbb{P}[(0,0) \in \infty \text{ cluster}]$
- The critical percolation probability $p_c = \inf \{ p : \theta(p) > 0 \}$

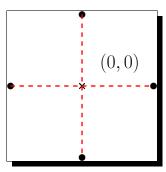


Figure 1.2: (0, 0) is isolated with prob. $(1 - p)^4$: the 4 hypothetical edges (red-dashed) do not appear.

Theorem: $0 < p_c < 1$ (in fact, $p_c = \frac{1}{2}$).

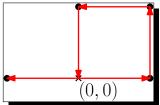


Figure 1.3: A self-avoiding path of length n = 5 start-

ing at the origin.

<u>Proof</u>: A "self-avoiding" path of length n may not reuse edges but may reuse vertices (*cf.* example on Figure ??). Define $\Omega_n = \{\text{self-avoiding path of length } n \text{ starting at the origin } (0,0) \}$. Then $|\Omega_n| \leq 4^n$.

Observe: $(0, 0) \in \infty$ cluster $\implies \forall n$, there exists a self-avoiding path of length n.

$$\Rightarrow \theta(p) \leq \mathbb{P}_p \left[\exists \text{ self-avoiding path of length } n \text{ starting at } (0,0) \right]$$
$$\leq \sum_{\gamma \in \Omega_n} \mathbb{P}_p \left[\gamma \text{ is a self-avoiding path } \right]$$

$$\leq 4^n \times p^n = (4p)^n \to 0 \text{ if } p < \frac{1}{4}$$

$$\implies p_c \geq \frac{1}{4}.$$

Conversely: For the second part, look at the **dual graph** $(\mathbb{Z}^2)^* \simeq \mathbb{Z}^2$.

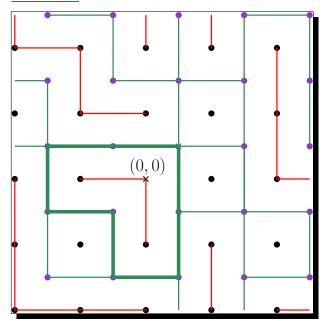


Figure 1.4: Dual graph $(\mathbb{Z}^2)^* = \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$. Its vertices are purple and its edges are drawn in green. The circuit surrounding (0, 0) is in bold.

← An edge is present in the dual graph if and only if it does not cross an edge of the original graph.

<u>Observe</u>: (0, 0) \notin ∞ cluster $\implies \exists$ circuit \in $(\mathbb{Z}^2)^*$ surrounding (0, 0) (and thus intersecting $(n + \frac{1}{2}, 0)$ for some $n \ge 0$).

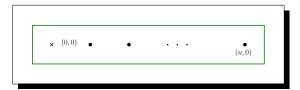


Figure 1.5: Smallest circuit surrounding (0, 0) and intersecting $(n + \frac{1}{2}, 0)$. Length : 2n + 4.

Thus,

$$1 - \theta(p) \le \sum_{n \ge 0} \mathbb{P} \left[\exists \text{ a circuit in the dual surrounding } (0, 0) \text{ and crossing } \left(n + \frac{1}{2}, 0 \right) \right]$$

$$\le \sum_{n \ge 0} \mathbb{P} \left[\exists \text{ a path of length } 2n + 4 \text{ crossing } \left(n + \frac{1}{2}, 0 \right) \right]$$

$$\le \sum_{n \ge 0} (4(1 - p))^{2n + 4} \quad \text{(in the dual graph, } p_{edge} = 1 - p)$$

This quantity can be arbitrarily small if p < 1 is taken close from 1.

$$\implies p_c < 1$$

<u>Theorem</u>: (AIZENMAN, KESTEN & NEWMAN 1987, BURTON-KEANE 1989) Unicity of the giant component. If $p \in (0, 1)$ is such that $\theta(p) > 0$,

$$\mathbb{P}_p \left[\exists ! \infty \text{ cluster} \right] = 1.$$

Proof: Let the events

 $\left\{ \begin{array}{l} \textit{$C_{\leq 1}$: there is at most 1 ∞ cluster} \\ \textit{$C_{<\infty}$: there is at most finitely many ∞ clusters} \\ \textit{C_{∞}: there are infinitely many ∞ clusters} \end{array} \right.$

<u>Observation</u>: \mathbb{P}_p is an ergodic measure of probability. So each event that is invariant by translation has probability 0 or 1red¹. That is the case of the three previous events. <u>Proof of observation</u>: Take any event A invariant under translation. Since the measure is finite and the σ -algebra is spanned by the 'cylinders' (*i.e.* the events depending on finitely many edges), for all $\varepsilon > 0$ there exists A_n depending on finitely many edges such that:

$$\mathbb{P}_p(A\Delta A_n)\leq \varepsilon.$$

For $x \in \mathbb{Z}^2$ sufficiently large, A_n and $\tau_x A_n$ (its translated by x) are independent:

$$\mathbb{P}_p(A_n \cap \tau_x A_n) = \mathbb{P}_p(A_n) \mathbb{P}_p(\tau_x A_n)$$
$$= \mathbb{P}_p(A_n)^2.$$

So,

$$\mathbb{P}_{p}(A) = \mathbb{P}_{p}(A \cap A) = \mathbb{P}(A \cap \tau_{x}A)$$

$$\leq \mathbb{P}_{p}(A_{n} \cap \tau_{x}A_{n}) + 2\varepsilon$$

$$\leq \mathbb{P}_{p}(A_{n})^{2} + 2\varepsilon$$

$$\leq \mathbb{P}_{p}(A)^{2} + 4\varepsilon$$

$$\Rightarrow \mathbb{P}_{p}(A) \in \{0, 1\}.$$

<u>Proof of the theorem</u>: Since $\theta(p) > 0$ there is an infinite cluster with non-null probability. Moreover, $C_{\leq 1} \subset C_{<\infty}$. There are only three possibilities:

$$\left(egin{aligned} \mathbb{P}_p(C_{\leq 1}) \ \mathbb{P}_p(C_{<\infty}) \end{aligned}
ight) \in \left\{ \left(egin{aligned} 0 \ 1 \ 0 \end{aligned}
ight), \left(egin{aligned} 1 \ 1 \ 0 \end{aligned}
ight), \left(egin{aligned} 0 \ 0 \ 1 \end{aligned}
ight)
ight\}.$$

¹Analogous to Kolmogorv's 0-1 law.

We have to rule out the first and third case. It is enough to show:

$$\mathbb{P}_p(C_{\leq 1}) = 1.$$

First step: Let us show : $\mathbb{P}_p(C_{<\infty} \setminus C_{\leq 1}) = 0$. (Eliminating the (0, 1, 0)-case.)

We only need to show: $\mathbb{P}_p(C_{<\infty}) > 0 \implies \mathbb{P}_p(C_{\leq 1}) > 0$. So we suppose that there is a *finite* number of infinite clusters. In this sub-universe, let us consider $\Lambda_n := [-n, n]^2$ the centered sub-grid of size $(2n + 1)^2$ and let \mathcal{F}_n be the event:

 $\mathcal{F}_n := \{ \text{ all infinite clusters intersect } \Lambda_n \}.$

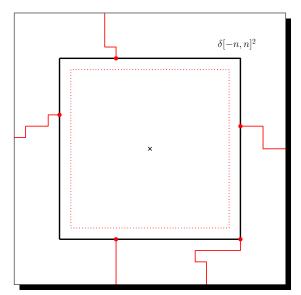


Figure 1.6: Λ_n and the infinite clusters (in red). There is a positive probability that all edges of the frontier (red-dotted) to be open.

 \mathcal{F}_n is independent of all edges inside Λ_n . Choose n_0 large enough so that with probability at least

$$\mathbb{P}(\mathcal{F}_{n_0}) \geq \frac{1}{2} \mathbb{P}(\mathcal{C}_{<\infty}) > 0$$

all infinite clusters intersect the box Λ_{n_0} . Note that such n_0 must exist (this n_0 depends on the number of clusters, but such n_0 is found a *priori*, before exploring clusters). One may think about it in this way: there is only finitely many clusters, that have to be somewhere, so if there was no such n_0 , we get a contradiction.

There is a positive probability that all edges of the boundary of Λ_{n_0} are open (red-dotted on the Figure \ref{figure}): $\mathbb{P}(\mathcal{F}_{n_0} \cap \text{all edges in } \Lambda_{n_0} \text{ present }) > 0$. In this case, there is only one infinite cluster. Also

$$\mathbb{P}(C_{\leq 1}) > 0.$$

Second step: Suppose $\mathbb{P}(C_{\infty}) > 0$ (this is the (0, 0, 1)-case).

First, let us define the concept of trifurcation. Suppose that the origin (0, 0) is in an infinite cluster. Remove the origin (and the adjacent bonds). In the new graph $\mathbb{Z}^d \setminus \{(0, 0)\}$, the previous cluster can either:

1°) Remain an infinite connected component (deprived of the origin and neighbour edges).

2°) Split into 2 infinite clusters (and perhaps with other finite clusters).

3°) Split into 3 (or maybe 4) infinite clusters (and perhaps with another finite cluster). We say that (0, 0) is a **trifurcation** point in this latter case.

<u>Define</u>: Let $T_{(0,0)}$ be the event $\{(0,0)$ is a trifurcation point $\}$. $x \in \mathbb{Z}^2$ is a trifurcation point if:

$$T_x := \tau_x T_{(0,0)}$$
 occurs.

For $K \geq 3$, find n_0 large enough so that

 $\mathbb{P}(\text{(at least)}\,K \text{ infinite clusters intersect }\Lambda_{n_0})\geq \frac{1}{2}\mathbb{P}(\mathcal{C}_\infty).$

K := 3 works for the demonstration. Suppose for now K = 3. These 3 infinite clusters intersect $\partial \Lambda_{n_0}$ at three points: A, B and C (say at distance at least three from each other, to ensure rewiring). Then, modify the construction so that only red edges appear. See Figure $\ref{eq:superposition}$: we merge the three infinite clusters on (0,0). In this configuration, the origin becomes a trifurcation point. This means that:

$$\mathbb{P}(T_{(0,0)}) \geq rac{1}{2} \mathbb{P}(\mathcal{C}_{\infty}) (p(1-p))^{|Edges(\Lambda_{n_0})|}$$

(The probability of Λ_{n_0} 's internal configuration has been harshly majorized by $(p(1-p))^{|Edges(\Lambda_{n_0})|}$.)

Observe: If (0,0) is a trifurcation point for some n, then it is also a trifurcation point for all $m \ge n$ (other edges could be present inside the boxes, note that above we just give a lower bound on the probability of a trifurcation point).

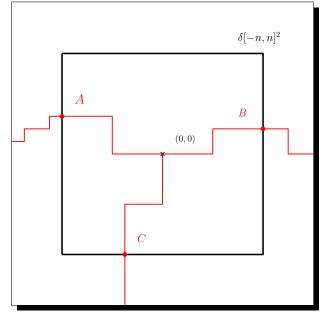


Figure 1.7: All edges in Λ_{n_0} except the red ones have been removed. (0, 0) thus becomes a trifurcation point.

Take a larger box of size $M \gg n_0$. We want to count the number $T := \sum_{x \in \Lambda_M} T_x$ of trifurcation points inside.

$$\mathbb{E}[T] = \mathbb{P}\left(T_{(0,0)}\right) |\Lambda_{\mathcal{M}}|. \tag{1.1}$$

Do the following pealing inside Λ_M :

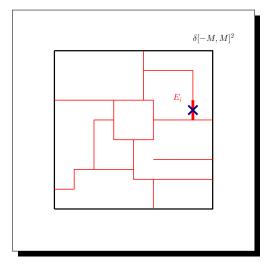


Figure 1.8: Remove the edges in Λ_M forming a cycle. The result is thus a forest.

Order edges inside Λ_M according to some (arbitrary) order E_1, \ldots, E_r . If E_i forms a cycle, take it out.

 \implies New list of edges $F_1, \ldots, F_{r'}$ without cycles.

If the new list $F \setminus \{F_i\}$ contains a cluster (can be a single vertex) non touching the boundary, remove all the vertices and edges of this cluster.

 \implies We end up with a **forest** (*i.e.* a set of disjoint trees) where **all leaves are on the boundary** $\delta \Lambda_M$.

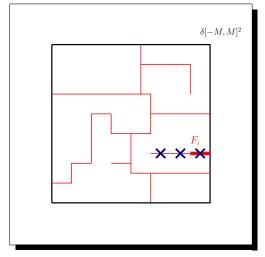


Figure 1.9: The removal of clusters of $F \setminus \{F_i\}$ without contact with the boundary.

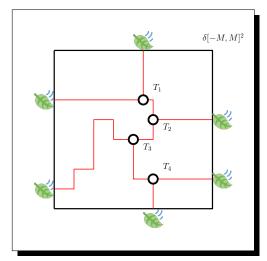


Figure 1.10: The trifurcation points T_x are the internal nodes of trees whose leaves are on the boundary of Λ_M .

Observe: The number of trifurcation points is less or equal to the number of leaves.

<u>Proof of observation</u>: Classical result of graph theory: the trifurcation points are the internal nodes of a tree. Let a tree of n nodes (m internal nodes of degree ≥ 3 and l leaves). Suppose first that there are no degree 2-nodes. Then we have: n = m + l. A tree of n nodes has exactly n-1 edges. Then, by double-counting the edges, we have:

$$2(n-1) = \sum_{v=1}^{n} deg(v) \ge l + 3m$$
$$2(l+m-1) \ge l + 3m$$
$$l-2 \ge m,$$

and for trees without vertices of degree 2 the statement holds. On the other hand, as long there are degree 2 vertices y, iteratively contract the corresponding edges xy and yz to xz and observe that the contraction operation does not change the ratio betrween degree 1 vertices and vertices of degree ≥ 3 . The observation follows.

In particular,

$$|T| \leq |\delta \Lambda_M|$$
.

Coupled with (1.1), we obtain:

$$\mathbb{P}\left(T_{(0,0)}\right) = \frac{\mathbb{E}[T]}{|\Lambda_{\mathcal{M}}|} \leq \frac{|\delta\Lambda_{\mathcal{M}}|}{|\Lambda_{\mathcal{M}}|} \to 0 \text{ when } \mathcal{M} \to \infty.$$

Since we had

$$\mathbb{P}\left(T_{(0,0)}\right) \geq \frac{1}{2}\mathbb{P}(C_{\infty})(p(1-p))^{|Edges(\Lambda_{n_0})|} \quad \text{where } n_0 \ll M \text{ was fixed,}$$

we must necessarily have

$$\mathbb{P}\left(C_{\infty}\right)=0.$$

 \geq Lecture

Long-range percolation

Vertex set : \mathbb{Z} .

$$\forall i \neq j \in \mathbb{Z} = \begin{cases} \{i, j\} \text{ is an edge } (\mathbf{open}) \text{ with probability} & p_{i, j}(\beta, \lambda) \\ \{i, j\} \text{ is not an edge } (\mathbf{closed}) \text{ with probability} & 1 - p_{i, j}(\beta, \lambda) \end{cases}$$

These events are all mutually independent. Moreother, for β , $\lambda > 0$, two intensity parameters, we define

$$p_{i,j}(\beta,\lambda) = \begin{cases} 1 - e^{-\lambda} & \text{if } |i-j| = 1\\ 1 - e^{-\frac{\beta}{|i-j|^2}} & \text{if } |i-j| \ge 2 \end{cases}$$

Large edges are permitted, but less likely:

 λ large $\implies p_{i,i+1}$ is likely.

 β large \implies prob. of long edges large.

For fixed β , the larger the distance, the smaller the probability of an edge.

Figure 2.1: Long (depending on β) and short edges (depending on λ) drawn on \mathbb{Z} .

Same question: Let

$$\theta(\beta, \lambda) = \mathbb{P}(0 \text{ is an } \infty \text{ cluster}).$$

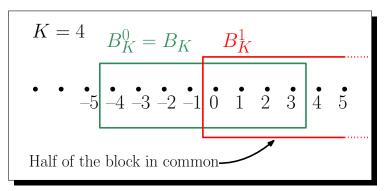
<u>Theorem</u>: For every $\beta > 1$, there exists a large enough $\lambda < \infty$ such that

$$\theta(\beta, \lambda) > 0.$$

(In fact, if $\beta \leq 1$ then $\theta(\beta, \lambda) = 0$.)

Main object: $K \in \mathbb{Z}$, a K-Block centered at $i \in \mathbb{Z}$ is the set of integers

$$B_K^i = [K(i-1), \ldots, K(i+1)).$$



A block of size K has 2K elements. B_K^i and B_K^{i+1} share K elements.

Figure 2.2: Representation of $B_K^i = [K(i-1), \dots, K(i+1))$.

For $S \subseteq \mathbb{Z}$, a **cluster** in S is a connected component using only vertices and edges in S.

<u>Define</u>: For $\theta < 1$, K-Block B_K^i is θ -good if it contains a cluster of size at least $2\theta K$ elements. Otherwise, B_K^i is θ -bad.

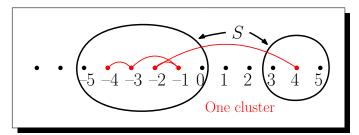


Figure 2.3: A cluster (in red) of five points and four edges.

Let

$$p(K, \theta) = \mathbb{P}(B_K \text{ is } \theta\text{-bad }).$$

<u>Proof idea</u>: Clusters of size K and density θ will merge to create larger clusters at scale CK with density $\theta' = \theta - \frac{C_0}{C}$. (We may loose a few clusters at size K since θ' is a bit smaller.)

Key lemma: Let $\beta > 1$, $\frac{3}{4} < \theta_{\infty} < 1$ such that $\theta_{\infty}^2 \beta > 1$, then there exists C_0 large enough such that for every $\lambda > 0$, $\theta \ge \theta_{\infty}$ and every $C \ge C_0$, $K \ge 2$

$$p(CK, \theta - \frac{C_0}{C}) \le \frac{1}{100} p(K, \theta) + 2C^2 p(K, \theta)^2.$$

Question: Why $\theta_{\infty} > \frac{3}{4}$?

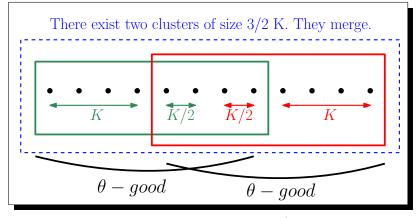


Figure 2.4: The two clusters θ -good (with $\theta > \frac{3}{4}$) straddle each other, merge and create a cluster which makes the block B_{2K} also θ -good.

<u>Proof of Lemma</u>: Let define $C(B_K^i)$ the largest cluster in B_K^i . For $|i| \leq C$, let E_i be the event

 B_K^i is θ -bad but B_K^j is θ -good for $j \in \{-(C-1), \ldots, C-1\} \setminus \{i-1, i, i+1\}$.

<u>Define</u>: $F_i = E_i \cap \{B_{CK} \text{ is } \theta' \text{-bad }\}$ for $\theta' := \theta - \frac{C_0}{C}$.

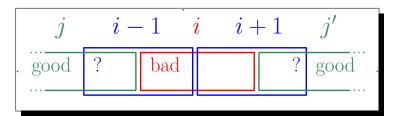


Figure 2.5: The event E_i .

If B_{CK} is θ' -bad \implies largest cluster in the block is of size $\leq 2C\theta'K = 2C\theta K - 2C_0K$. Therefore,

- I. Either F_i occurs for some $|i| \leq C$.
- 2. Two disjoint K-Blocks must be θ -bad.

By a union bound,

$$p(CK, \theta') \leq \sum_{i=-(C-1)}^{C-1} \mathbb{P}[F_i] + \mathbb{P}(\exists \text{ two disjoint } \theta\text{-bad } K\text{-Blocks}).$$

- 2. $\mathbb{P}(\exists \text{ two disjoint } \theta\text{-bad } K\text{-Blocks }) \leq \binom{2(C-1)}{2} p(K, \theta)^2$.
- I. If all boxes B_K^j with $|j| ≤ C C_0$ are θ-good, then B_{CK} is θ'-good. We may also assume $|i| ≤ C C_0$.

Let
$$|i| \leq C - C_0$$
,

$$\mathbb{P}(F_i) = \mathbb{P}(E_i)\mathbb{P}(B_{CK} \text{ is } \theta' \text{-bad } | E_i)$$

$$\leq p(K, \theta)\mathbb{P}(B_{CK} \text{ is } \theta' \text{-bad } | E_i).$$

Define:

 $\overline{C^-}$ = Union of all clusters $C(B_K^i)$ for $j \le i-2$. C^+ = Union of all clusters $C(B_K^i)$ for $j \ge i+2$.

The definition of C^- , C^+ do not tell us anything about edges from C^- to C^+ . If largest clusters in C^- and C^+ merge, then B_{CK} is θ' -good.

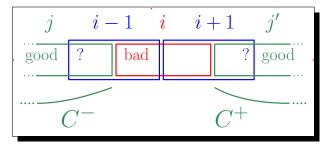


Figure 2.6: Definition of C^+ and C^- .

Observe:

$$|C^+ \cap \{iK + K, ..., iK + K + 2lK\}| \ge 2\theta Kl$$
 for each $l \ge 1$ by θ -goodness.

Let $iK < y_1 < y_2 < \dots$ are all elements of C^+ . For $l = \left\lceil \frac{b}{2\theta K} \right\rceil$,

$$y_b \le iK + K + 2K \left\lceil \frac{b}{2\theta K} \right\rceil$$
$$\le iK + \frac{3K + b}{\theta}.$$

Similarly, let $iK > x_1 > x_2 > \dots$ all elements of C^- .

$$x_a \ge iK - \frac{3K + a}{\theta}.$$

$$\implies \theta (y_b - x_a) \le 6K + a + b.$$

Check all edges:

$$\mathbb{P}\left(\text{ no edge of largest clusters of }C^{-}\text{ to }C^{+}\right) = \prod_{x \in C^{-}} \prod_{y \in C^{+}} \mathbb{P}\left(\{x,y\}\text{ is not an edge}\right)$$

$$< e^{-\beta \theta^{2} \sum_{a=1}^{|C^{-}|} \sum_{b=1}^{|C^{+}|} \frac{1}{\theta^{2}(y_{b}-x_{a})^{2}}}.$$

Claim without proof: The Sum-Integral comparison gives the bound:

$$\sum_{a=1}^{|C^{-}|} \sum_{b=1}^{|C^{+}|} \frac{1}{\theta^{2} (y_{b} - x_{a})^{2}} \ge \log \left(\frac{C - |i|}{8} \right).$$

Thus

$$\mathbb{P}\left(\text{ no edge of largest clusters of }C^-\text{ to }C^+\right)\leq \left(\frac{C-|i|}{8}\right)^{\beta \theta^2}$$

Then, for C_0 large enough

$$\sum_{-(C-1)}^{C-1} \mathbb{P}(F_i) \leq p(K,\theta) \sum_{-(C-C_0)}^{C-C_0} \left(\frac{8}{C-|i|}\right)^{\beta\theta^2} \leq \frac{1}{100} p(K,\theta).$$

Proof of the theorem:

Let
$$\beta > 1$$
, $\theta_{\infty} \in (\frac{3}{4}; 1)$, $\beta \theta_{\infty}^2 < 1$.
Let $\theta_p < 1$ and $C_p \ge C_0$ and set

$$C_{n+1} = (n+1)^3 C_1$$
 and
$$\theta_{n+1} = \theta_n - \frac{C_0}{C_{n+1}} \quad \text{(s.t. } \forall n, \theta_n > \theta_\infty > \frac{3}{4}.\text{)}$$

Initially, start with blocks of size $K_1 = C_1$ and λ so large that

$$p(C_1, \theta_1) \le C_1 e^{-\lambda} \le \frac{1}{1000C_1^2}.$$

Set up the blocks

$$K_1 = C_1,$$

$$K_{n+1} = C_{n+1}K_n.$$

Set $u_n = p(K_n, \theta_n)$. By the "Key Lemma",

$$u_{n+1} \le \frac{1}{100}u_n + 2C_{n+1}^2 u_n^2.$$

By induction,

$$\forall n, C_n^2 u_n \le \frac{1}{1000}$$

$$\implies \mathbb{P}\left(B_{K_n} \text{ is } \theta\text{-good }\right) \ge 1 - \frac{1}{1000C_n^2} \ge \frac{1}{2}.$$

$$\implies \mathbb{P}\left(0 \in \text{ infinite component }\right) > 0.$$

References:

- 1. Hugo Duminil-Copin, "Introduction to Bernoulli percolation" (2018)
- 2. H. Duminil-Copin, C. Garban & V. Tassion, "Long-range models in 1D revisited" (2020)
- 3. Vincent Tassion. "Planarity and locality in percolation theory" (2014)
- 4. Geoff Grimmett. "Percolation"(1999)