

Toward improved MAGs characterization

Alex Di Genova Associate professor Universidad de O' Higgins

16/05/2023

Systemix center Anillo ACT210004

 A natural laboratory of ~90 years history of mine extremophile's bacterial communities.

٠

- Sample and Sequence ~30 metagenomes with short and long reads.
 - 10 with short reads (2x150, 30Gb).

https://systemixcenter.cl/

Nextflow : Guarantee reproducibility between HPCs

Di Tommaso, P., Chatzou, M., Floden, E. *et al.* **Nextflow enables reproducible computational workflows**. *Nat Biotechnol* **35**, 316–319 (2017). https://doi.org/10.1038/nbt.3820

Systemix

Metagenomes from mining tailings are complex

Systemix MAG pipeline results

QUAST: Number of Contigs

Created with MultiQC

MAG Quality

Contamination<=5

Presence of the 23S, 16S, and at least 18 tRNAs.

Completeness>=50 Contamination<=10

Completeness<50 Contamination<=10

MaxBin2 binner MetaBAT2 Refined

Bowers, R., Kyrpides, N., Stepanauskas, R. et al. Minimum information about a single amplified genome (MISAG) and a metagenomeassembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35, 725-731 (2017). https://doi.org/10.1038/nbt.3893

How to improve MAGs quality?

Genome assembly

Using short reads there are multiple possible genome assemblies

How do you get through?

In practice, it is impossible to find "the" genome path.

Long reads reduce assembly graph complexity

Koren, S., & Phillippy, A. M. (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. *Current opinion in microbiology*, 23, 110-120.

Wengan: a full hybrid assembler

- Avoids entirely all-vs-all read comparisons (**fast**).
- A new assembly graph (GoogleMaps).
- 1.5 years of development.
 - ~20k lines of code (C++, PERL)
- <u>https://github.com/adigenova/</u> wengan

ARTECES
Inference Control

Interpretended
Inference Control

Image: Control
Image: Con

- **Di Genova, A**. (2018). Fast-SG: an alignment-free. algorithm for hybrid assembly. *GigaScience*, 7(5).
- Di Genova, A. (2021). Wengan: Efficient and high-quality hybrid de novo assembly of human genomes. *Nature Biotechnology*. 12

Jain, M.(2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nature biotechnology*, *36*(4), *338*.

Is Wengan ready for metagenome assembly? • Some assembly challenge: A: NO.

- Heterozygosity and diploid phasing? (trio, graph topologies)
- Metagenomes:
 - Repeat algorithms (coverage is not uniform)
 - binning (integration with the **assembly graph**)
 - Low abundance species (target sequencing)
 - Strain-level deconvolution(phasing)

Moises Rojas Postdoc

From Genome Assembler to Metagenome Assembler

Flye -> MetaFlye

• Hifiasm -> Hifiasm-meta

Kolmogorov, M., Bickhart, D.M., Behsaz, B. *et al.* **metaFlye: scalable long-read metagenome assembly using repeat** graphs. *Nat Methods* **17**, 1103–1110 (2020).

Feng, X., Cheng, H., Portik, D. *et al.* Metagenome assembly of high-fidelity long reads with hifiasm-meta. *Nat Methods* **19**, 671–674 (2022).

Binning: Wengan Assembly Graph

We compute approximate long-read overlaps using synthetic pair-ends as elemental building blocks plus long-read coherent path search on the SSG.

Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin, **GraphBin: refined binning of metagenomic con** graphs, *Bioinformatics*, Volume 36, Issue 11, June 2020, Pages 3307–3313, https://doi.org/10.1093/bioinformatics/btaa180

LAM: Wengan is effective at shallow long-read coverage

10X of long-read coverage: NG50 5~10Mb

LAM : Read enrichment in real-time.

 Nanopore sequencers can select which DNA molecules to sequence, rejecting a molecule after analysis of a small initial part.

Weilguny, L., De Maio, N., Munro, R. *et al.* Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design. *Nat Biotechnol* (2023).

Payne, A., Holmes, N., Clarke, T. *et al.* Readfish enables targeted nanopore sequencing of gigabase-sized genomes. *Nat Biotechnol* **39**, 442–450 (2021).

UOH sequencing and HPC platforms (2023)

Universidad de O'Higgins is just 7 years old.

200 Human genomes per year

April 2023

HPC-UOH

digenoma lab

Algorithms and theoretical analyses for understanding complex biological systems (Cancer)

Omics data

+

Novel algorithms

+

Genomic heritage (Chile)

+

Students from different backgrounds (Biology, Mathematics, Bio-Informatics, Medicine)

https://digenoma-lab.cl/

digenova@gmail.com alex.digenova@uoh.cl

Acknowledges

International collaborators

Center for Mathematical Modeling

NLHPC National Laboratory for High Performance Computing Chile

National collaborators

- Juan Francisco Miquel (UC)
- Luis Zapata (ICR)
- Mauricio Latorre (UOH)
- Jose Manuel Yañez (U.Chile)

Universidad de O'Higgins

Agencia Nacional de Investigación y Desarrollo

• ...

Thank you!