
16/05/2023

Toward improved MAGs   
characterization
Alex Di Genova 
Associate professor 
Universidad de O’ Higgins



Systemix center
Anillo ACT210004

• Tailings:  Mining waste


• Cauquenes tailing: Over 360 million 
tones of waste (since 1936, 12.5km2). 
With high concentrations of copper, 
molybdenum, and nickel, with ranging 
pH 2.0-4.0 in most sectors.  


• A natural laboratory of ~90 years history 
of mine extremophile's bacterial 
communities.


• Sample and Sequence ~30 
metagenomes with short and long reads.


• 10 with short reads (2x150, 30Gb).

1936-1945 1955-1970 

In operation

https://systemixcenter.cl/



MAG pipeline for short-reads
Systemix - Nexflow
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Nextflow :  Guarantee reproducibility between HPCs
Di Tommaso, P., Chatzou, M., Floden, E. et al. Nextflow enables reproducible computational workflows. Nat Biotechnol 35, 316–319 
(2017). https://doi.org/10.1038/nbt.3820



Metagenomes from mining tailings are complex
Systemix

HairBall



Systemix
MAG pipeline results

Fragmented assemblies 

• > 300k contigs

• N50 < 10kb

• Sizes 400-850Mb
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Completeness<50 

Contamination<=10

Completeness>=90 

Contamination<=5

Presence of the 23S, 16S, 
and 5S rRNA genes 
and at least 18 tRNAs.

Bowers, R., Kyrpides, N., Stepanauskas, R. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-
assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35, 725–731 (2017). https://doi.org/10.1038/nbt.3893



How to improve MAGs 
quality?



Genome assembly
Genome 

Overlaps

ReadsSequencing  
technology

Assembler
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Assembly graph

The genome path (sequence)



In practice, it is impossible to find “the” genome path.
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Using short reads there are multiple 
possible genome assemblies

Repeat

Unique

Repeat
?

How do you get through? 



Long reads reduce 
assembly graph complexity

Koren, S., & Phillippy, A. M. (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. 

Current opinion in microbiology, 23, 110-120.
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Hybrid assembly: How can we 
combine short and long reads?

Genome

Short reads (< 300 bp, base error < 0.1%)

Sequencing  
technology R1 R1

Long reads (>10 kb, base error <5%)
*   * *   * * * * * * * * * * *   

*   * *   * * * * * * * * * * *   
*   * *   * *    *  *  * * *   

* base errors

The resulting assembly is both contiguous and accurate

Wengan 
Assembler

R1
Assemble short-reads

Scaffold using long reads

Refine repetitive regions (polishing)
* ** ** * * ** ** *

R1 R1

*   * *   * * * * * * * * * * *   
*   * *   * * * * * * * * * * *   

*   * *   * *    *  *  * * *   

(1)

(2)

(3)

Identical repeats



Wengan: a full 
hybrid assembler
• Avoids entirely all-vs-all read 

comparisons (fast).


• A new assembly graph 
(GoogleMaps).


• 1.5 years of development.


• ~20k lines of code (C++, PERL)


• https://github.com/adigenova/
wengan
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Genome assembly is the process by which an unknown 
genome sequence is constructed by detecting overlaps 
between a set of redundant genomic reads. Most genome 

assemblers represent the overlap information using different kinds 
of assembly graph1,2. The main idea behind these algorithms is to 
reduce the genome assembly problem to a path problem where the 
genome is reconstructed by finding the true genome path in a tan-
gled assembly graph1,2. The entanglement comes from the complex-
ity that repetitive genomic regions induce in the assembly graphs1,2. 
The first graph-based genome assemblers used overlaps of variable 
length to construct an overlap graph2. The main goal of the overlap 
graph approach and of its subsequent evolution, namely the string 
graph3, is to preserve the read information2,3. However, read-level 
graph construction requires an expensive all-versus-all read com-
parison3. The read-level nature implies that a path in such a graph 
represents a read layout, and a subsequent consensus step must be 
performed to improve the quality of bases called along the path3. 
These graph properties are the foundation of the overlap–layout–
consensus (OLC) paradigm3–5.

A seemingly counterintuitive idea is to fix the overlap length  
to a given size (k) to build a de Bruijn graph1. However, de Bruijn 
graphs have several favorable properties making them the method 
of choice in many modern short-read assemblers6–8. In this 
approach, the fixed-length exact overlaps are detected by break-
ing the reads into consecutive k-mers1. The k-mers are usually  
stored in hash tables (constant query time), thus avoiding entirely 
the costly all-versus-all read comparison6–8. Unlike a string  
graph, the de Bruijn graph is a base-level graph1,6–8; thus, a path  
(contig) represents a consensus sequence derived from a pileup  
of the reads generating the k-mers (k-mer frequency). Moreover, 
the de Bruijn graph is useful for characterizing repeated as well as 
unique sequences of a genome (repeat graph9). However, by split-
ting the reads into k-mers, valuable information from the reads may 
be lost, especially when these are much longer than the selected 
k-mer size3.

The type of overlap detected, and therefore the type of assembly 
graph constructed, is related to the sequencing technology used to 
generate the reads. One class of modern high-throughput sequenc-
ing machines produces short (100–300 base pairs (bp)) and accu-
rate (base error < 0.1%) reads10,11, and a second class produces long 
(>10 kilobases (kb)) but error-prone (base error < 15%) reads12,13. 
Despite the high per-base error rate of long reads, these are the bet-
ter choice for genome reconstruction14, as longer overlaps reduce 
the complexity of the assembly graph15, and therefore more contigu-
ous genome reconstructions are achievable14.

Regardless of the sequencing technology, the goals of a genome 
assembler are to reconstruct the complete genome in (1) the few-
est possible consecutive pieces (ideally chromosomes) with (2) 
the highest base accuracy while (3) minimizing the computational 
resources (the 1–2–3 goals). Short-read de Bruijn graph assemblers 
are good for accomplishing goals 2 and 3 (refs. 6–8), while long-read 
assemblers excel at achieving goal 1 (refs. 4,5).

Modern long-read assemblers widely adopted the OLC para-
digm4,5,16–19 and new algorithms have substantially accelerated the 
all-versus-all read comparison16–19. Such progress has been possible 
by avoiding entirely the long-read error-correction step16–19, and by 
representing the long reads as fingerprints derived from a subset 
of special k-mers (that is, minimizers20, minhash19 and so on). The 
reduced long-read representation is appropriate for detecting over-
laps >2 kb in a fast way16,18,19. The newest long-read assemblers are 
therefore starting to be good also at goal 3 (refs. 16,18,19). However, 
assembling uncorrected long reads has the undesirable effect of giv-
ing more work to the consensus polisher17,19,21–23. Genome assem-
bly polishing is the process of improving the base accuracy of the 
assembled contig sequences17,19,21–24. Usually, long-read assemblers 
perform a single round of long-read polishing16,18,19, which is fol-
lowed by several rounds of polishing with long17,19,21,23 and short17,22,24 
reads using third-party tools17,19,21–24.

Currently, polishing large genomes, such as the human genome, 
can take much more computational time than the long-read assembly  

Efficient hybrid de novo assembly of human 
genomes with WENGAN
Alex Di Genova! !1,2 ✉, Elena Buena-Atienza3,4, Stephan Ossowski3,4 and Marie-France Sagot! !1,2 ✉

Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only long, error-prone 
reads, and most human genomes assembled from long reads add accurate short reads to polish the consensus sequence. Here 
we report an algorithm for hybrid assembly, WENGAN, that provides very high quality at low computational cost. We dem-
onstrate de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethION, 
PacBio Sequel, Illumina and MGI technology. WENGAN implements efficient algorithms to improve assembly contiguity as well 
as consensus quality. The resulting genome assemblies have high contiguity (contig NG50: 17.24–80.64!Mb), few assembly 
errors (contig NGA50: 11.8–59.59!Mb), good consensus quality (QV: 27.84–42.88) and high gene completeness (BUSCO com-
plete: 94.6–95.2%), while consuming low computational resources (CPU hours: 187–1,200). In particular, the WENGAN assem-
bly of the haploid CHM13 sample achieved a contig NG50 of 80.64!Mb (NGA50: 59.59!Mb), which surpasses the contiguity of 
the current human reference genome (GRCh38 contig NG50: 57.88!Mb).

NATURE BIOTECHNOLOGY | VOL 39 | APRIL 2021 | 422–430 | www.nature.com/naturebiotechnology422

• Di Genova, A. (2018). Fast-SG: an alignment-free.  
algorithm for hybrid assembly. GigaScience, 7(5).     


• Di Genova, A. (2021). Wengan: Efficient and high-quality 
hybrid de novo assembly of human genomes. Nature 
Biotechnology.

https://github.com/adigenova/wengan
https://github.com/adigenova/wengan


Benchmarking 
Results

13
Jain, M.(2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature 
biotechnology, 36(4), 338.

Wengan: 
• High contiguity 
• High consensus quality 
• Low computational resources

NA12878 data:

• 60X Illumina

• 40X Nanopore 

• 5X > 100kb

Wengan Masurca Wtdbg2 Canu Flye
CPU 
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Factor 1 36 2 275 9
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Wengan assembles a human genome in a day
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Is Wengan ready for 
metagenome assembly?

• Some assembly challenge:


• Heterozygosity and diploid phasing? (trio, graph topologies)


• Metagenomes: 


• Repeat algorithms (coverage is not uniform) 


• binning (integration with the assembly graph)


• Low abundance species (target sequencing)


• Strain-level deconvolution(phasing)
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From Genome Assembler to 
Metagenome Assembler

• Flye -> MetaFlye

ARTICLES NATURE METHODS

(Fig. 1d). Similarly to haplotype-aware assembly29, these strain- 
induced subgraphs in the repeat graphs need to be detected and 
simplified to produce accurate and contiguous metagenomic 
assemblies21. The Methods section describes how metaFlye detects 
and simplifies strain-induced subgraphs. In addition to the stan-
dard strain-suppression mode, metaFlye also has a strain-resolution 
mode that we refer to as metaFlyestrain.

Benchmarking using simulated metagenomic datasets. Long-read 
assemblers often generate complete assemblies for many genomes 
in mock community datasets, but fragmented assemblies of more 
complex real metagenomes. Ideally, one could benchmark assem-
bly algorithms using a realistic complex mock dataset with known 
reference genomes; however, no such dataset is currently available. 
We thus simulated two bacterial communities with 64 and 181 
genomes and benchmarked metaFlye, Canu, miniasm and wtdbg2 
on these two datasets that we refer to as SYNTH64 and SYNTH181, 
respectively (Supplementary Notes 1 and 2 and Supplementary 
Tables 1 and 2). Here we summarize the benchmarking results on 
the SYNTH181 dataset generated on the basis of a realistic bacte-
rial community, originally described by the Critical Assessment of 
Metagenome Interpretation consortium30.

First, we selected 181 complete bacterial reference genomes 
that were available for the CAMI_I_TOY_MEDIUM community 
(Supplementary Note 1). The analysis of these genomes using fas-
tANI31 showed that there were 33 genomes with closely related 
strains (average nucleotide identity >95%) and 22 genomes with 
closely related species (average nucleotide identity 85–95%), result-
ing in 55 genomes that are particularly challenging for long-read 
assemblers. We simulated 26 Gb of PacBio reads using Badread32, 
following the abundance distributions from the original dataset 
(mode D1). The read coverage of each genome varied from 0.01× 
to 497×. There were 91 out of 181 genomes with coverage above 5×.

metaFlye showed a substantial improvement over other assem-
blers in both contiguity and reference coverage of separate genomes 
on the SYNTH181 dataset (Fig. 2), with improvements becoming 
more apparent for difficult-to-assemble genomes (characterized by 
low mean NGA50 and coverage among all assemblers). metaFlye/
metaFlyestrain produced the assemblies with a higher total metage-
nome reference coverage (54.8%/54.1%), followed by Canu (43.1%), 

miniasm (42.9%), wtdbg2 (42.7%) and Flye (24.3%). metaFlye 
and metaFlyestrain assembled over 90% of the total length of the 
92 well-covered genomes in the SYNTH181 dataset (with cover-
age above 5×), whereas all other methods had coverage <75% 
(Supplementary Note 2). Similarly, metaFlye/metaFlyestrain pro-
duced the most contiguous assemblies of the entire metagenome 
(NGA20 = 1.25 Mbp/1.23 Mbp), followed by Canu (923 kbp), 
miniasm (782 kbp), Flye (347 kbp) and wtdbg2 (341 kbp). Similar 
conclusions were made from analyzing the smaller SYNTH64 com-
munity, with metaFlye producing assemblies with better reference 
coverage and NGA50 (Extended Data Fig. 1 and Supplementary 
Note 2). Flye (in single-genome mode), produced inferior assem-
blies on both synthetic datasets. NGA50 is the statistic computed 
for contigs that are broken at their misassembly breakpoints (if any). 
It is defined as the highest possible number L such that all broken 
contigs that are longer than L cover at least 50% of the reference. 
NGA20 is defined similarly, but for 20% reference coverage.

Analyzing Human Microbiome Project assemblies. The Human 
Microbiome Project (HMP) mock dataset represents a mock 
human gut microbiome formed by 22 bacteria with known refer-
ence genomes sequenced using PacBio reads (total length 6.8 Gbp 
and N50 = 6.7 kbp). Nineteen of these bacteria have read coverages 
ranging from 39× (Bacillus cereus) to 477× (Helicobacter pylori). 
As the remaining three genomes (Methanobrevibacter smithii, 
Candida albicans and Streptococcus pneumoniae) have low coverage 
(below 1×), they were excluded from further analysis.

We used metaQUAST33 to evaluate the statistics of the combined 
references (Table 1, Supplementary Table 3, Extended Data Fig. 2 
and Supplementary Note 3) as well as to compute the separate statis-
tics for each species present in the sample (Fig. 3 and Extended Data 
Fig. 3). Because miniasm outputs contigs with a high per-nucleotide 
error rate, we performed one round of contig polishing  
using Racon34.

The metaFlye, Canu and miniasm assemblies had the highest 
NGA50 (2.0 Mb, 1.8 Mbp and 1.8 Mbp, respectively) and highest 
reference coverage (>99.6%). The wtdbg2 and FALCON assem-
blies had reduced reference coverage and lower contiguity, associ-
ated with bacteria with abundances substantially deviating from 
the median dataset coverage (B. cereus, Rhodobacter shaeroides,  
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Fig. 1 | metaFlye repeat annotation and examples of simple bubbles, superbubbles and roundabouts. a, The subgraph of an assembly graph formed by 
four distinct genome subpaths. Repeat and unique edges are shown in color and black, respectively. metaFlye identifies edges X, Y and Z as repetitive 
by analyzing the distinct read-paths through the subgraph. b, A simple bubble formed by two strains. c, A superbubble formed by three strains. d, A 
roundabout formed by two strains, one of which shares a repeat with a different region of the metagenome.
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• Hifiasm -> Hifiasm-meta
Kolmogorov, M., Bickhart, D.M., Behsaz, B. et al. metaFlye: scalable long-read metagenome assembly using repeat 
graphs. Nat Methods 17, 1103–1110 (2020).
Feng, X., Cheng, H., Portik, D. et al. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat 
Methods 19, 671–674 (2022).



Binning: Wengan Assembly Graph 
(SSG)

We compute approximate long-read overlaps using 
synthetic pair-ends as elemental building blocks plus 
long-read coherent path search on the SSG. 

R1 R2
R1 R2

Compressed de Bruijn  graph Collapsed repeats

Short reads

 1kb

 3kb

 5kb

 10kb

R1 R2 R2R1

Long reads

Synthetic mate-pair libraries

Detection of chimeric contigs

Genome

P1 P3

P2

P1

P3

P2

P5P4 P7P6

Consensus polishing

Assembled genome

POA consensus

Backbone validation

Assembly backbone

Synthetic Scaffolding Graph construction

Repeat masking

Transitive reduction

Short-read contigs

1

2

3

4

5

6

7

8

9

10

16

ARTICLES NATURE METHODS

(Fig. 1d). Similarly to haplotype-aware assembly29, these strain- 
induced subgraphs in the repeat graphs need to be detected and 
simplified to produce accurate and contiguous metagenomic 
assemblies21. The Methods section describes how metaFlye detects 
and simplifies strain-induced subgraphs. In addition to the stan-
dard strain-suppression mode, metaFlye also has a strain-resolution 
mode that we refer to as metaFlyestrain.

Benchmarking using simulated metagenomic datasets. Long-read 
assemblers often generate complete assemblies for many genomes 
in mock community datasets, but fragmented assemblies of more 
complex real metagenomes. Ideally, one could benchmark assem-
bly algorithms using a realistic complex mock dataset with known 
reference genomes; however, no such dataset is currently available. 
We thus simulated two bacterial communities with 64 and 181 
genomes and benchmarked metaFlye, Canu, miniasm and wtdbg2 
on these two datasets that we refer to as SYNTH64 and SYNTH181, 
respectively (Supplementary Notes 1 and 2 and Supplementary 
Tables 1 and 2). Here we summarize the benchmarking results on 
the SYNTH181 dataset generated on the basis of a realistic bacte-
rial community, originally described by the Critical Assessment of 
Metagenome Interpretation consortium30.

First, we selected 181 complete bacterial reference genomes 
that were available for the CAMI_I_TOY_MEDIUM community 
(Supplementary Note 1). The analysis of these genomes using fas-
tANI31 showed that there were 33 genomes with closely related 
strains (average nucleotide identity >95%) and 22 genomes with 
closely related species (average nucleotide identity 85–95%), result-
ing in 55 genomes that are particularly challenging for long-read 
assemblers. We simulated 26 Gb of PacBio reads using Badread32, 
following the abundance distributions from the original dataset 
(mode D1). The read coverage of each genome varied from 0.01× 
to 497×. There were 91 out of 181 genomes with coverage above 5×.

metaFlye showed a substantial improvement over other assem-
blers in both contiguity and reference coverage of separate genomes 
on the SYNTH181 dataset (Fig. 2), with improvements becoming 
more apparent for difficult-to-assemble genomes (characterized by 
low mean NGA50 and coverage among all assemblers). metaFlye/
metaFlyestrain produced the assemblies with a higher total metage-
nome reference coverage (54.8%/54.1%), followed by Canu (43.1%), 

miniasm (42.9%), wtdbg2 (42.7%) and Flye (24.3%). metaFlye 
and metaFlyestrain assembled over 90% of the total length of the 
92 well-covered genomes in the SYNTH181 dataset (with cover-
age above 5×), whereas all other methods had coverage <75% 
(Supplementary Note 2). Similarly, metaFlye/metaFlyestrain pro-
duced the most contiguous assemblies of the entire metagenome 
(NGA20 = 1.25 Mbp/1.23 Mbp), followed by Canu (923 kbp), 
miniasm (782 kbp), Flye (347 kbp) and wtdbg2 (341 kbp). Similar 
conclusions were made from analyzing the smaller SYNTH64 com-
munity, with metaFlye producing assemblies with better reference 
coverage and NGA50 (Extended Data Fig. 1 and Supplementary 
Note 2). Flye (in single-genome mode), produced inferior assem-
blies on both synthetic datasets. NGA50 is the statistic computed 
for contigs that are broken at their misassembly breakpoints (if any). 
It is defined as the highest possible number L such that all broken 
contigs that are longer than L cover at least 50% of the reference. 
NGA20 is defined similarly, but for 20% reference coverage.

Analyzing Human Microbiome Project assemblies. The Human 
Microbiome Project (HMP) mock dataset represents a mock 
human gut microbiome formed by 22 bacteria with known refer-
ence genomes sequenced using PacBio reads (total length 6.8 Gbp 
and N50 = 6.7 kbp). Nineteen of these bacteria have read coverages 
ranging from 39× (Bacillus cereus) to 477× (Helicobacter pylori). 
As the remaining three genomes (Methanobrevibacter smithii, 
Candida albicans and Streptococcus pneumoniae) have low coverage 
(below 1×), they were excluded from further analysis.

We used metaQUAST33 to evaluate the statistics of the combined 
references (Table 1, Supplementary Table 3, Extended Data Fig. 2 
and Supplementary Note 3) as well as to compute the separate statis-
tics for each species present in the sample (Fig. 3 and Extended Data 
Fig. 3). Because miniasm outputs contigs with a high per-nucleotide 
error rate, we performed one round of contig polishing  
using Racon34.

The metaFlye, Canu and miniasm assemblies had the highest 
NGA50 (2.0 Mb, 1.8 Mbp and 1.8 Mbp, respectively) and highest 
reference coverage (>99.6%). The wtdbg2 and FALCON assem-
blies had reduced reference coverage and lower contiguity, associ-
ated with bacteria with abundances substantially deviating from 
the median dataset coverage (B. cereus, Rhodobacter shaeroides,  
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four distinct genome subpaths. Repeat and unique edges are shown in color and black, respectively. metaFlye identifies edges X, Y and Z as repetitive 
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roundabout formed by two strains, one of which shares a repeat with a different region of the metagenome.
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Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin, GraphBin: refined binning of metagenomic contigs using assembly 
graphs, Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307–3313, https://doi.org/10.1093/bioinformatics/btaa180
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LAM: Wengan is effective at 
shallow long-read coverage

ARTICLES NATURE BIOTECHNOLOGY

region29. Regarding SDs (Supplementary Fig. 12), WENGAN-M 
and WENGAN-A resolve over 41 Mb (~6 Mb of SDs >100 kb), 
which is better than WTDBG2 (17 Mb) and comparable to SHASTA 
(!x ¼ 42Mb
I

; Supplementary Fig. 12). WENGAN-D resolves more 
SD sequences with ultralong Nanopore reads (56.09–60.12 Mb) 
and matches the top performer CANU on NA12878 (56.09 versus 
56.98 Mb). With PacBio reads, the FALCON assembler resolves 
6.4 Mb more SD sequences than WENGAN-D (Supplementary 
Fig. 12). The SD analysis of these three diploid samples shows 
that WENGAN-A and WENGAN-M are more conservative than 
WENGAN-D for SD assembly, and that WENGAN-D is compa-
rable to the top performers (FLYE and CANU), while achieving a 
lower rate of assembly errors (Table 1, Fig. 2b and Supplementary 
Fig. 12).

In terms of computational resources, the WENGAN assemblies 
consumed less than 1,000 CPU hours (Table 1 and Supplementary 
Table 8, maximum elapsed time of 45 h). WENGAN-M, the fast-
est WENGAN mode based on MINIA3, consumed ~738 times less 
CPU hours than CANU (203 versus ~150,000 CPUh; Table 1) and 
required only 53 Gb of RAM to complete the assembly (Table 1).

Collectively, the benchmark results demonstrate that WENGAN 
is the only genome assembler evaluated that optimizes all of the 
1–2–3 de novo assembly goals, namely, contiguity, consensus accu-
racy and computational resources.

WENGAN is effective at low long-read coverage. We investigated 
the required long-read coverage to produce de novo assemblies with 
an NG50 of at least 10 Mb. Moreover, we assessed the suitability of 
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Fig. 4 | De novo genome assemblies of NA12878 when varying the long-read coverage and the short-read technology. a, The de novo assemblies were 
sorted by NG50 at each long-read coverage (lolliplot). We computed the NGA50 (which corresponds to the NG50 corrected of assembly errors) of each 
assembly using QUAST (see Methods). b, The consensus quality (see Methods) of each genome assembly and the CPU hours required for the assembly. 
c, The WENGAN (W-X) and FLYE assemblies of the complex MHC region located in Chr6: 28,477,797–33,448,354 (4.97!Mb). The MHC sequence was 
aligned to the genome assemblies and the aligned blocks ≥30!kb with a minimum identity of 95% were kept. The alignment breakpoints (vertical black 
lines) indicate a contig switch, an alignment error or a gap in the assembly. The assemblies of the MHC region are displayed in tracks by long-read coverage.
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• 10X of long-read coverage: NG50 5~10Mb



LAM : Read enrichment in 
real-time.

• Nanopore sequencers can select which DNA molecules to 
sequence, rejecting a molecule after analysis of a small initial part .

Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01580-z

about the genotype at many sites—the proportion of positions at 
which we still require more information decreases. Due to the dif-
ferential abundance of the sample species, Listeria monocytogenes 
is considered mostly resolved after only a few minutes, followed 
later by Pseudomonas aeruginosa and Bacillus subtilis (Fig. 2b). 

Accordingly, the proportion of accepted reads demonstrates that the 
focus switches from the most abundant bacteria toward rarer species  
(Fig. 2c). As in ref. 14, all species’ abundances can still be accurately 
quantified by considering the total number of observed reads per 
species (Supplementary Fig. 1).

a

c

d

e

f

a Acquire read

b Sequence and map
initial µ bases; check
curr. decision strategy

+

+
–

–Reje
ct 

(0
)

Accept (1)

c Reject read d Acquire new
read

Sequencing time t

0 l + αµ µ + ρ µ + ρ + α

e Sequence fully

l

f f Acquire new
read 

Po
s.

 b
en

e$
t s

co
re

Coverage Observed coverage
Ideal coverage

Forward
Reverse

Forward
Reverse

Variant sites40x

30x

20x

10x

Coverage

Ex
pe

ct
ed

 b
en

e$
t

De
ci

si
on

Genomic position

b

Fig. 1 | Methodological overview of dynamic, active sampling. a, Different 
sites might require different levels of coverage; for example, sites lacking 
variation are resolved by few reads, and sites of particular interest require more. 
Accumulation of coverage beyond that necessary (observed coverage in gray, 
exceeding ideal coverage in orange) is wasteful, whereas other sites would 
benefit from observing more data (observed < ideal). b, Local fluctuations in 
the distribution of fragment origins also result in uneven coverage and reduced 
efficiency of sequencing. c, We quantify the genotype uncertainty at each site 
based on prior probabilities and data observed so far. The expected shift in 
uncertainty caused by observing a new read at that position is expressed as 
‘positional benefit score’. d, The expected benefit of a hypothetical read starting 
at each location is computed as the sum of accumulated positional scores, 

weighted by the probability of reaching those positions, illustrated for forward 
and reverse reads starting at two positions. e, A Boolean decision strategy for 
each position instructs the sequencer to either continue sequencing (1) or reject 
from the pore (0) a read that starts at that position. Stages c–e are updated and 
iterated throughout the sequencing experiment. f, Overview of our model of 
the sequencing process. A novel read is acquired, and, after sequencing its initial 
bases, its starting position and orientation are identified, determining its fate 
according to the current decision strategy (e). Upon rejection (upper path), the 
pore is freed, a new read is acquired and the model iterates from the beginning. 
Conversely, upon acceptance (lower path), the molecule translocates through 
the pore until all of its nucleotides are read. New read acquisition and model 
iteration then proceed as before.
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platforms (2023)

200 Human genomes per year

April 2023

Universidad de O’Higgins is just 7 years old.
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