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Oceans and Climate: generalities

Many phenomena

O Ocean circulation.
O Transport of nutrients.
O Plankton dynamics.

o Carbon pump.

O etc.

If we want to predict or simulate, we need:

O Mathematical modeling.
O Numerical methods.
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Numerical methods. Approaches

Data regimes': Physics-Based vs. Data-Driven approaches.

Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics

Classical numerical methods vs. Machine Learning (ML) methods:

q Physics-
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1Karniadakis, G. E, Kevrekidis, I. G, Lu, L, Perdikaris, P, Wang, S., and Yang, L. (2021). Physics-informed machine learning. Nature
Reviews Physics, 3(6):422-440
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Physics-Based vs. Data-Driven’

a) Physics-Based b) Data-Driven c) Physics-Based Machine Learning
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2Degen, D., Caviedes Voullieme, D, Buiter, S, Hendriks Franssen, H.-J,, Vereecken, H., Gonzalez-Nicolas, A, and Wellmann, F. (2023).
Perspectives of physics-based machine learning for geoscientific applications governed by partial differential equations. Geoscientific

Model Development Discussions, 2023:1-50
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Physics-Based Machine Learning: Advantages.

Over classical num. methods: Over classical ML:

Incorporates physical laws.

O Reduces computational
cost.

O Increases flexibility.
O New patterns.

Physics-Based Machine Learning: Disadvantages/Challenges.

O

O
O
O

Reduces data requirements.

Improves interpretability.

New phenomena.

Over classical num. methods:

O Increases complexity.

O In some cases it could limit

applicability.
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Methods in Physics-Based Machine Learning

Gaussian processes with physical constraints (GP-PC).
Regression trees.

Differential equation neural networks (DENN).
Physics-informed neural networks (PINNs).

O O o0 o o

Hybrid approaches.
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Physics-Informed ML (I): PINNSs’

Ligata (. Ug)

PDE (residual form): |8

F(u) = 0in Q, with
knowledge of B(u)on
a subset of Q.

jf’physics("’_(“//))

Igtrain = (1= N)Zata + ALphysics

Neural network Physics information PDE

Find 6 = (W, b) the set of weights and biases that minimizes the loss function

o%.‘rain = ('I - )\)o%ata + /\o(/physics ) (1)
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3Raissi, M, Perdikaris, P, and Karniadakis, G. (2019). Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686-707
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Example: Poisson equation (l).

Direct problem

Given x(x, y) and f(x, y) in the interior domain, and u(x, y) on the boundary:
Determine u(x, y) if
V-(kVu)="f

Available Data

* LossData
«  Loss Physics

Finding the optimal

weights and biases
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Example: Poisson equation (l1).

Inverse problem

Given f(x, y) in the interior domain and u(x, y) in a sampling set:
Determine x(x, y) if
V. (kVu)=f

Available Data

Ks(X, y)

Finding the optimal

weights and biases
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Advantages

O Itis a meshless method.
O It faces the curse of dimensionality.

Challenges

O Despite the experimental results, it is necessary to establish in theory
that PINNs can accurately simulate/recover the parameters.

O To obtain methods that make the optimization process efficient and
accurate (architecture, hyperparameters, etc.)
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Some strategies:

B Hypothesis set
O Hyperparameters (number of neurons and layers, activation
functions): manual, gaussian process, evolutionary search.
o Architectures: FNN, CNN, autoencoders, etc.
B Sampling: grid, hyper-Latin cube, adaptive, evolutionary, etc.
B Optimization strategy
O Objective function.

e PDE sense: classical or distributional sense, lagrangian or
eulerian, etc.
e Trade-off for PDE and data loss:

o Manual, evolutionary, causal, etc.
o Hard and soft constraints.

O Gradient descent:

e SGD, Adam, L-BFGS, etc.
e Learning rate: constant, scheduled, adaptive, etc.
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PINNs (I): Optimal hyperparameters search”’

PINNs as a multi-objective optimization problem

O We seek a solution to the problem
rgian (gphysics(e)a gdata(a)) . 3)

O Method: Evolutionary algorithms to obtain an optimal a and a set of

MN's such that estimate the Pareto optimal front.
fa(x)
J

X2 DeCiSiW

X i)

“de Wolff, T, Lincopi, H. C, Marti, L., and Sanchez-Pi, N. (2022). Mopinns: an evolutionary multi-objective approach to
physics-informed neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 228-231

5de Wolff, T, Carrillo, H., Marti, L, and Sanchez-Pi, N. (2023). Optimal architecture discovery for physics-informed neural networks. In
Advances in Artificial Intelligence—~IBERAMIA 2022: 17th Ibero-American Conference on Al, Cartagena de Indias, Colombia, November
23-25,2022, Proceedings, pages 77-88. Springer
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Burgers equation
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PINNSs (I1): Application of PINNs to ocean models

9N + u - VN = —F(I)g(N)P + (1= 7)h(P)Z + i(P)P + j(Z)Z
9P +u - VP = f(l)g(N)P - h(P)Z — i(P)P

OhZ +u-VZ =~vh(P)Z - (2)Z

+Initial conditions

Here, u is the velocity of a fluid, which couples the NPZ model to, for
instance, Navier-Stokes.

Navier-Stokes (w = V x u)

1
8tw+u-Vw-@Aw

V-u=0
+Initial condition
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Work in progress: making simulations

O PINNs with several loss functions.

O Hyperbolic nature of the model adds difficulties in training
—> causal PINNs.

PINNs strategy: Causal PINNs °

O PINNs can violate physical causality.
o Re-formulation:

Ny i-1
Z(e) = Nltzwiﬁ’(tivg)a where Wi = exp —EZ$(tk,0)
i=1 k=1

6Wamg, S, Sankaran, S, and Perdikaris, P. (2022). Respecting causality is all you need for training physics-informed neural networks
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Physics-Based ML (I1): Reduced order modeling (ROMs)
for PDEs’

Owuy, +Pylu,]=1f, inQx(0,T),
+BC, +1C,,.

Problem:

Given an unknown state y, and
measurements (snapshots) for
different p;'s, estimate the solution

Multi-query with high dimensional model:

manifold .Z = {U(M)| I E e@} u(n),  u(p), u(ps), ... u(ug) time
Method (work in progress): T e
Reduced Basis method (RB) mixed o [tme

with NNs.

Application (work in progress)

Optimal location of measurements for inverse problems.

7Hesthaven, J.S.and Ubbiali, S. (2018). Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal
of Computational Physics, 363:55-78
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Conclusions, perspectives, challenges

Application of PBML methods

O Integration to Pisces?
0 What method will work better for ocean numerical simulation?
Could this technique be useful for modeling challenges?

O

O Multiscale phenomena?

O Multi-physics phenomena

O To determine which parameters influence the state distribution
O Assessment of uncertainty.

O Predictions and real-time applications.
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Thanks for your attention!
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