TARA Oceans

Tara Oceans and virus ecogenomics

Matthew B. Sullivan Ohio State University

Professor of Microbiology and Civil, Environmental and Geodetic Engineering Co-director OSU Infectious Disease Institute Microbial Communities Program Founding Director OSU Center of Microbiome Science NSF EMERGE Biology Integration Institute Executive Committee

Where are we going?

Why and how do we study viruses of microbes?

Oceans – patterns, processes and paradigms

Microbes for ...

nutrients in soils

oxygen (half of that in air is from *marine* microbes)

What role do viruses play?

Viruses impact microbes, in the oceans ...

(cells killed per day)

(can be cultured) 50 *million* viruses in a mouthful of seawater

1029

(genes moved per day)

Ecosystem impacts?

How can we study viruses? SHAPE, BUT NO HOST OR BIOLOGY HOST NUMBERS, BUT NO HOST OR BIOLOGY

> Virus Ecogenomics (genome seq'g in ecological context)

Plaque

6 yrs to get quantitative data and establish what to count

scence copy

Electron microscopy

Viruses in the global oceans Patterns, Processes, Paradigms

Viruses in the global oceans Patterns, Processes, Paradigms

Tara Oceans: A 30+ PI international consortium

Most (90%) of what we observe is *unknown*

New to science

Known

Brum, Ignacio-Espinoza, Roux et al. 2015. Science. 348: 1261498

Patterns: Genome-enabled virus tracking

Brum, Ignacio-Espinoza, Roux et al. 2015. Science. 348: no. 6237 1261498

Genomic tracking: Viruses 'ride' ocean currents

Brum, Ignacio-Espinoza, Roux et al. 2015. Science. 348: no. 6237 1261498

Viruses in the global oceans Patterns, Processes, Paradigms

Viruses impact *processes* through metabolic reprogramming by AMGs*

* AMGs = Auxiliary Metabolic Genes

Mann et al. *Nature*. 2003. Millard et al. *PNAS*. 2004 Lindell & Sullivan et al. *PNAS*. 2004. Lindell et al. *Nature*. 2005, 2007. Clokie et al. *EM*. 2006. Sullivan & Lindell et al. *PLoS Biology*. 2006 Dammeyer et al. *Curr. Biol*. 2008. Sharon et al. *Nature*. 2009. Sullivan et al. *EM*. 2005, 2010. Fridman et al. *Nature Microbiol*. 2017.

"Virus" Photosynthesis

Viruses in the global oceans Patterns, Processes, Paradigms

Paradigms? #1 – virus sequence space

Can we, and how do we identify viral 'populations' in environmental data?

<u>The paradigm: viral genomes are subject to rampant</u> mosaicism, so continuum expected

Deng & Ignacio-Espinoza et al. 2014. *Nature*; Brum et al. 2015. *Science*; Gregory et al. 2016. *BMC Genomics;* Duhaime et al. 2017. *Frontiers in Microbiology;* Gregory & Zayed et al. 2019. *Cell*.

Paradigms? #1 – virus sequence space #2 – the ocean C pump

Genomic tracking: Viruses 'ride' ocean currents

Brum, Ignacio-Espinoza, Roux et al. 2015. Science. 348: 1261498

Viruses 'sink' at many stations – why ?

Brum, Ignacio-Espinoza, Roux et al. 2015. Science. 348: 1261498

Paradigm:

Viral lysis increases recycling of organic matter

Paradigm:

Viral lysis increases recycling of organic matter

Paradigm:

Viral lysis increases recycling of organic matter

Alternative hypothesis:

Viral lysis increases export via aggregate formation

Alternative hypothesis:

Viral lysis increases export via aggregate formation

test by 'genes-to-ecosystems' modeling **TARA** using *Tara* Oceans data **OCEANS**

Plankton networks driving carbon export in the oligotrophic ocean

Lionel Guidi^{1,2*}, Samuel Chaffron^{3,4,5*}, Lucie Bittner^{6,7,8*}, Damien Eveillard^{9*}, Abdelhalim Larhlimi⁹, Simon Roux¹⁰[†], Youssef Darzi^{3,4}, Stephane Audic⁸, Léo Berline¹[†], Jennifer Brum¹⁰[†], Luis Pedro Coelho¹¹, Julio Cesar Ignacio Espinoza¹⁰, Shruti Malviya⁷[†], Shinichi Sunagawa¹¹, Céline Dimier⁸, Stefanie Kandels–Lewis^{11,12}, Marc Picheral¹, Julie Poulain¹³, Sarah Searson^{1,2}, *Tara* Oceans Consortium Coordinators[‡], Lars Stemmann¹, Fabrice Not⁸, Pascal Hingamp¹⁴, Sabrina Speich¹⁵, Mick Follows¹⁶, Lee Karp–Boss¹⁷, Emmanuel Boss¹⁸, Hiroyuki Ogata¹⁹, Stephane Pesant^{20,21}, Jean Weissenbach^{13,21,22}, Patrick Wincker^{13,21,22}, Silvia G. Acinas²³, Peer Bork^{13,24}, Colomban de Vargas⁸, Daniele Iudicone²⁵, Matthew B. Sullivan¹⁰[†], Jeroen Raes^{3,4,5}, Eric Karsenti^{7,14}, Chris Bowler⁷ & Gabriel Gorsky¹

Guidi, Chaffron, Bittner & Eveillard et al. 2016. Nature. 532: 465-70.

Lucie Bittner

Samuel Chaffron

Lionel Guidi

Damien Eveillard

Which organisms drive carbon export in the oceans?

Brum et al. 2014. *Nature.* 513: 242-245. Brum et al. 2015. *Science.* 348: 1261498. Roux et al. 2016. *Nature.* 537: 689-693. Gregory et al. 2019. *Cell.* 177: 1109-23.

Genes-to-ecosystems modeling: Guidi et al. 2016. *Nature*. 532: 465-70.

That was all DNA viruses ... what about RNA viruses? (likely more impt for eukaryotes)

RNA virus discovery, doubles known phyla

28 Tb = 44K contigs = 6,686 "complete" RdRp

Zayed, Wainaina & Dominguez-Huerta et al. 2022. Science. 376: 156-162.

Also see "ecology" companion paper = Dominguez-Huerta & Zayed *et al.* 2022. Science. 376: 1202-8.

Brum & Sullivan. 2015. Nat. Rev. Micro. / Brum, Ignacio-Espinoza & Roux et al. 2015. Science / Roux et al. 2016. Nature.
/ Roux et al. 2015. eLife. 08490 / Guidi, Bitner, Chaffron, Eveillard et al. 2016. Nature / Howard-Varona et al. 2018. ISME J
/ Gregory & Zayed et al. 2019. Cell / Jang & Bolduc et al. 2019. Nature Biotechnology / Howard-Varona et al. 2020. ISME J / Zayed, Wainaina & Dominguez-Huerta et al. 2022. Science / Dominguez-Huerta & Zayed et al. 2022. Science